Selected Topics in BSDEs Theory

Take-Home Exam : to be sent to philippe.briand@univ-smb.fr by 2019-09-15

- 1. B is a one-dimensional Brownian motion;
- 2. ξ is a **nonnegative** square integrable random variable, \mathcal{F}_T^B -measurable;
- 3. $f : \mathbf{R} \longrightarrow \mathbf{R}$ is defined by $f(y) = -y^2$.
- 1. For $n \ge 1$, let $\xi^n = \min(\xi, n)$ and $f_n(y) = -\min(y^+, n)^2$ with $y^+ = \max(y, 0)$. (a) Explain briefly why the BSDE

$$Y_t^n = \xi^n + \int_t^T f_n(Y_s^n) \, ds - \int_t^T Z_s^n \, dB_s, \quad 0 \le t \le T,$$

has a unique solution in \mathcal{B}^2 . This solution is denoted (Y^n, Z^n) .

(b) Solve the BSDE

$$U_t = 0 + \int_t^T f_n(U_s) \, ds - \int_t^T V_s \, dB_s, \quad 0 \le t \le T.$$

Hint: The simplest is often the best! Look for a deterministic solution.

- (c) Use comparison theorem to prove that $0 \le Y_t^n \le n$. Hint: for the upper bound, remark that $f_n \le 0$ and solve the BSDE with n as terminal condition and 0 as generator.
- (d) Deduce from the previous result that (Y^n, Z^n) solves the BSDE

$$Y_t^n = \xi^n + \int_t^T f(Y_s^n) \, ds - \int_t^T Z_s^n \, dB_s, \quad 0 \le t \le T.$$

2. Use Itô's formula and the fact that f is nonincreasing on \mathbf{R}_+ to see that, for any n and m and for $0 \le t \le T$,

$$|Y_t^m - Y_t^n|^2 + \int_t^T |Z_r^m - Z_r^n|^2 \, dr \le |\xi^m - \xi^n|^2 - 2 \int_t^T (Y_r^m - Y_r^n) \, (Z_r^m - Z_r^n) \, dB_s.$$

Hint: $d(Y_t^m - Y_t^n) = -(f(Y_t^m) - f(Y_t^n)) dt + (Z_t^m - Z_t^n) dB_t$

- 3. Prove that the sequence (Y^n, Z^n) is converging in \mathcal{B}^2 toward (Y, Z).
- 4. (Bonus) Prove that (Y, Z) solves the BSDE

$$Y_t = \xi + \int_t^T f(Y_s) \, ds - \int_t^T Z_s \, dB_s, \quad 0 \le t \le T.$$

5. Do you think that the condition $\xi \ge 0$ is decorative?