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Introduction and Motivation

* A Backward Stochastic Differential Equation (BSDE) is an equation
ay,=—-f(t,Y, Z)dt+ Z,dB;, 0<t=<T, Yr=¢.
*x Backward : Y7y =¢

* ¢ terminal condition

* f generator or driver
e Why two components in the solution?

* (Y, Z) has to be adapted to &#5; Z makes Y adapted to &5
e Example: f=0

*x —dY;=0,Yr=¢

* Y; =¢ not adapted

* The best adapted approximation : Y, =E (¢ | F/)

* Y is a Brownian martingale and

t
Y[: Y0+f ZSdBS’ ZELZ, _dYt:Odt_thBt
0



e Heat Equation
1
o,u(t,x) = EAu(t, x), t>0,xeR”, u0,x)=1uy(x), u(t,x) =Eluy(x+ By)].
e Nonlinear (semilinear) Heat Equation

o;u(t,x) = %Au(t, xX)+ f (u(t,x),Veu(t,x)), t>0,xeR", u(0,x)=uy(x).

* T >0isfixed. Set Y =u(T—-t,x+By), Z =V,u(T - t,x+ By)

*x  We have if the PDE has a smooth solution

1
dy; = (—dtu(T— t,x+B;)+ EAM(T_ t,x+Bt)) dt+V,u(T-t,x+B;)dB;

= —f(u(T —t,x+By),Veu(T - t,x+B))dt+ V., u(T —t,x+B;)dB;
=—f(Y}, Z"dt+ Z dB,.

* Since Y7 = uy(x + Br), (Y*, Z") solves the BSDE

T T
Y = uy(x+ By) +f fYs5 75 ds—f Z} dB;, w(T,x)=Y;.
t t
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1. Brownian Motion, Martingales, etc.

e (Q,%,P) a complete probability space

Stochastic Processes

Definition 1. A stochastic process, X, in R? is a family (X;);>o of random vari-
ables i.e. measurable applications from (Q, %) to (Rd,%(Rd)).

e A stochastic process can be viewed as a random map: w — (t — X;(w))

* A stochastic process X is measurable whenever the map (¢,w) — X;(w) from
R, x Q to R? is measurable w.r.t. the o-algebras Z(R,) ® F and Z(RY).

*  We will always deal with measurable processes.

* X and Y two stochastic processes
* X is a modificationof Y ifVt=0,P(X;,=Y;) =1
* X and Y are indistinguishable if P (X; =Y;,Vt=0) =1

* A stochastic process X is continuous if, P-a.s., the map ¢ — X, is continuous



Exercise. 1. What is the stronger notion between "modification" and "indis-
tinguishability"?

2. Show that, if X and Y are continuous stochastic processes, they are indis-
tinguishable as soon as they are modifications

e Let{%;:}>0 be afiltration of (0, &): {%}:>¢ is an increasing family of o-algebras
e X is adapted w.r.t. {F;},5 if X; is & ,—measurable for each ¢

* The smallest filtration for which X is adapted is &; =0(Xs:s< 1)

*  We will always add the P-null sets of &, A 9,;’( =0(N,X;:8<1)

e X is said to be progressively measurable if, for each ¢, the map (s, w) — X;(w)
from [0, t] x Q to R is measurable w.r.t. ([0, t]) ® &, and Z(R%)

* A progressively measurable process is measurable and adapted

* If X is continuous and adapted then X is progressively measurable

Stopping times

Definition 2. A r.v. T with values in R, is a stopping time of {F} ;5 if

V=0, {t<tleZ,.



e If 7 is a stopping time,

Fr={A€eF, AN{T<t}e F, Vi}

is a o-algebra
* Foo=0(F;:1t20)

* The events in %; can be thought as events that may occur before T

e If X is progressively measurable and 7 is a stopping time then the stopped
process X" is also progressively measurable w.r.t. &,

* X;[ = Xonr: X;(w) = Xr(w)/\t(w)

Brownian Motion

Definition 3. A real valued stochastic process B is a Brownian motion if :

1.
2.

By, =0 P-a.s.

For 0 < s < t, B, — B; is independent of o{B,, u < s} and is a gaussian r.v.
with mean 0 and variance r—s;

continuous paths: P-a.s. t— B;(w) is continuous;



e For ¢ >0, the density of B, is given by (2m 1)~ exp{—x?/(21)}
e If the filtration {%};>( is given, B is said to be a {%;},~o-BM if B is adapted
with continuous paths and

YueR, VO<s<t, E(e™PB9 | %) = exp {~u?(t—s)/2}.

e If B is a BM, the filtration 3’@3 =o(AN,Bs: s <t) is right continuous and com-
plete and B is a BM w.r.t. this filtration

*  We will always work in this setting

Exercise. 1. Let X; = sup,_,Bs. Is X and adapted process? A progressively
measurable process?

2. Let Y, = B, + By,. Is Y and adapted process?
3. Let ¢ > 0. Show that {cB;,}:>¢ is a BM.

Theorem 1 (Paths regularity). Let B a BM. Then P-a.s.
1. t— B;(w) is not of finite variation on any interval
2. t— B;(w) is locally Hélder continuous of order a for a < 1/2.

3. t— B;(w) is not differentiable at any point



Definition 4. A BM with values in R? is a vector B = (B',...,B?) where B’ are
independent real BM.

Martingales

Definition 5. A real stochastic process X is a supermartingale w.r.t. {%,},> if:
1. for t =0, X, is &,—mesurable (X is adapted)
2. for t =0, X, is integrable: E[| X;|] < +o0
3. forO<s<t E(X,| %) < X;

X is a submartingale if — X is a supermartingale: E (X, | %) = X.

X is a martingale if X is a supermartingale and a submartingale: E (X; | %;) = X;.
e If X is a martingale, S and T two bounded stopping times with S < T then
[E(Xﬂgs) = XS, P—a.s.

Example. Let B be a BM. Then B, {B? -t} _, and {exp (0 B; — 0*1/2)}
tingales.

>0 dare mar-



Theorem 2 (Doob Maximal Inequalities). Let X be a martingale (or a nonnegative
submartingale) with right-continuous paths. Then,

1. Vp=1,Ya>0, aPP(sup,|X;l=a)<sup,E[X,"];
2. Vp>1, E[sup,|X;|”]<qPsup,E[|X;|"] whereq=p(p-1~".
* We will always work with continuous stochastic processes

Definition 6. Let {%,},~o be a filtration.

An adapted continuous stochastic process X is a local martingale if there exists
a nondecreasing sequence of stopping times {7,},>; s.t. lim,_.,,7, = +oo P-a.s
and, for all n =1, X" is a martingale.

Theorem 3. Let X be a continuous local martingale. There exists a unique nonde-
creasing and continuous process, (X, X), s.t. (X, X)o =0 and X?— (X, X) is a local
martingale.

Example. If B is a BM, (B,B), =t.

Theorem 4 (BDG inequalities). Let p > 0. There exist two constant c, et C, s.t., if
X is a continuous local martingale with X, =0,

¢, E[(X, X)P1?] <E|sup|X,|P| < C,E[(X, X)P/?].

=0




e BDG = Burkholder-Davis—-Gundy

e In particular, for any real T >0,

c,,[E[<X,X>’;/2]s[E sup | X" st[E[<X,X>’;’2].

0<t<T




2. Ito Calculus

Stochastic Integration

t
e Define the integral f H;dB; where B is a BM
0

* This is not so easy since the paths of B are not of finite variation

e Let T>0and H = (Hy)o<:<r a simple process i.e. a stochastic process of the
form

p
H; = ¢polo(1) + Z(Pil]ti_l,ti] (1),

=1
where 0 =fp <t <...<t,=T, ¢ is a r.v. Fy-measurable and bounded, and,
fori=1,...,p, ¢; is ar.v. &, —measurable and bounded.

e Weset, forO0<tr=<T,

t p
f HSdBS:Z(Pi(Bti/\t_Bti_ll\t)
0 i=1



* If t €]ty tria],
t k
f H;dBg = Z(Pi(Bt,- — By, ) + Pri1(Br— By, ).
0 i=1

Proposition 5. If H is a simple process, then ( fot H,dB;) IS a continuous mar-

tingale s.t.
f H; dB

e Since simple processes are dense in the space

0<t<T

U |H,|*ds]| .
T

f |H|*ds <oo}
0

one can define the stochastic integral for H € .4 and the results of the previ-
ous proposition are still true

Vtel0,T],

= {(Ht)oS t+<T, progressively measurable, E

Proposition 6. Let H € ./*. Then, we have

[E Sup()S t<T

T
_[Efods,
0




and, if T is a stopping time,
T T
f H;dB; :f 1,.,H;dB;, P-a.s.
0 0

* Finally, we can relax the integrability assumption on H

e We can define the stochastic integral for H in the space

loc —

T
ME = {(Ht)OStST» progressively measurable, f |H|*ds < co IP—a.s.}
0

* In this case, the stochastic integral is a local martingale s.t.

. t
<f Hsst>t=f \H,P ds.
0 0

Ito Processes

* An It0 process is a process X of the form

t t
Vo<t<T, X,;:X0+f sts+f H,dB,,
0 0



where X, is #y—measurable, K and H two progressively measurable processes
s.t. P-a.s.:

T T
f |K5|ds+f |H,|* ds < +oo.
0 0
¢ [In differential form, we have

dXt:tht'l'thBt, r=0.
e If X and Y are two such processes, we set
t
(X, Y)t:f H;H.ds
0

* This is the quadratic variation of the martingale parts of X and Y

Proposition 7 (Integration by part formula). If X and Y are two Ito processes
4 t
XY = X0Y0+f XSdYS+f Y, dX;+(X,Y);.
0 0

 The usual formula can not be true since B? is not a martingale!



e The extra term comes from the fact that (B); = ¢:

T _ 2
(B); = |}91|IPOZ (Bti Bti—l)

* P = (t;) subdivision of [0, T], |P| = max(t; — t;_;)
e If X has finite variation paths then (X), = 0.

Theorem 8 (It0’s formula). Ler (t,x) — [(t,x) be a €* function and X an It6
process. Then

t t t
FUt, X)) = (0, X) + f fl(s, X, ds+ f f;(s,Xs)dXﬁ% f £ (5, X,) d(X, X)..
0 0 0

e The result is still true if X is a continuous local martingale

* In the case of an It6 process X, the formula rewrites

t
£, X0 = £(0, Xo) + fo (05 f (5, X5) + 0. f (5, Xo) Ko) s

1 t t
+5 f 0% f(s,X)H>ds+ f 0,.f(s,X,) HydB;.
0 0



Example. 1. Let X, =exp (0B, —0?*t/2). Show that
t
X, = 1+0f X;dB;, t=0.
0
2. Show that the stochastic differential equation

dX,;ZCZX,;dt-I-O'dB,;, tZO, X():.X:ER,

t
Xt:x+af X,ds+oB;, t=0,
0

has a unique solution. Hint: Y, = e *'X,.

e Let X be an It6 process in R” meaning that, fori =1,...,n,

r d t
X;=X5+f Kids+) | H*dBE, t=o.
0 k=170



e If f is a smooth function i.e. f € €2, then
t n et _
F6.X0 = F0. X0+ [ 0uf (5, X ds+ Y. [ 0, f(5, X dx]
0 i=1J0

1 -
+EZ

t
aii,xjf(s’ XS)d(Xl’XJ>s;
i,j=1J0

where dX| = Kl ds+¥{_, Hy* dBf and d(X', X)), = £, Hy " H}" ds.

e The formula is simpler using vectors notations: H is an n x d matrix, X,K
columns of length n, B a column of size d,

t t
Xt:X0+f sts+f H;dB;, t=0
0 0



Itd’s formula reads
f(t,Xy) :f(O,XO)+f0t65f(s,Xs)ds+f0tVf(s,Xs)-dXs
+%f0ttrace (D*f(s, Xs) HH}) ds
= (0, Xo) +f0t (0:f (s, X9) +Vf(s, X)) K)ds
+% fo ttrace (D*f(s, X HHY) ds + fo tD f(s, X)) H;dB;

* Observe that trace (H;H;) = | Hy|*.



3. Important Results

Theorem 9 (Paul Lévy). Let X be a continuous {%}:>9—local martingale, with
Xo=0. We assume that, fori,je{l,...,d}, (X', X/);=6; ;.

Then X is a {%,};=0-BM in R9.

Proof. * We have to prove that

Vo<s<t<T, VueR?  E(e"M X g)=exp{-|ul’t-s)/2}.

e By Ito’s formula applied to x — e’“*, we get
. . ro |u 2 pt
el X = gl Xs +f ie'""*ru-dX, - - f e Xrdr.
N N

e By BDG inequality, since (X); = ¢, X is a square integrable martingale
* Thus, the same is true for the previous stochastic integral

e Taking conditional expectation w.r.t. &;, we obtain

2 t
ﬂf E(e™*r|%)dr
N

[E(eiu-Xt |g;s) — eiu-Xs _ >



e Thus, we have, for all 1 = s,

2 t
, u .
[E(elu'(Xt—Xs | gzjs) =1- %f [E(elu-(Xr—Xs) |<O;:s) dr.
S
* This gives the result.
O]
Theorem 10 (Girsanov). Let (h;)o<;<7 be a stochastic process in M l%)c taking values

in R%. We consider the process (D;)o<:<7 defined by
t 1 t
thexp{f hs-dBS——f Ihslzds}, O0<t<T.
0 2 Jo
If D is a martingale then the stochastic process B* given by
t
B; :Bt—f heds, 0<t<T,
0

isa BM w.r.t. P* where dP* = D7 -dP on .

T
exp{l/Zf | |2 ds}
0

e Novikov criterium: If

E < 400




then {D}y<;<7 is @ martingale.

Proof. » B* is continuous and (B*),; =t
e In view of Lévy theorem, we have to prove that B* is a P*—local martingale
e Since, dD;=h;D;dB; and dB; = —h,dt+ dB,, we have

d(D,B?) = D.dB’ + B dD, + h,D,dt,
- _htDtdt‘i‘DtdBt + B:htDt dBt'f‘ htDtdt,

e Thus, DB* is a local martingale under P as a stochastic integral

 This gives the result since

E*(B; | %,) = D,;'E(D,B; | %,) = B;.

N

[]

Theorem 11 (Brownian martingales). Let M be a square integrable martingale

w.r.t. the Brownian filtration {F [}, 7.



Then, there exists a unique process (Hy) se(0,1) € M2(RK), s.t.
t
P-a.s. Ytel0,T], Mt:M0+f H;-dB;.
0

e In particular, every Brownian martingale is continuous

e If ¢ is a square integrable r.v,, gﬁ—measurable, then

T
€:[E[€]+f Hs'st
0

for a unique (H;)c0 1) € M?(RF).
* This follows from the previous result applied to M, =E (& | FF).
e In these results, the process H can be chosen predictable

* The sigma algebra of predictable sets is generated by continuous and adapted
processes
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1. Review of Previous Lecture

e Let X be an It6 process in R”

dXt:tht+thBt, r=0
e From It6’s formula, for0<¢<T,
T T
| X7|* = IXt|2+f (2X;- K, + | Hyl?) ds+2f X, - H,dB;
t t
and, for any a € R,
T
et | X7 = e‘”lXt|2+f e® (2X,- K + | Hyl* + | X|*) d's
t

T
+2 f e” X, - Hyd B
t



o If é € L?(FE), then, there exists a unique H € M*(R"), s.t.
T
E(¢1F]F)=E[¢] +f H;-dB,, 0<t<T
0
e The process H can be chosen predictable

* The sigma algebra of predictable sets is generated by continuous and adapted
processes



2. Notations

* (Q,%,P) complete probability space
e B is a standard Brownian motion in R4
*x F,=F tB v AN

o [:10,T] xQxRFxR¥? — R a measurable map w.r.t. # ® 8 (R¥) ® 8 (R¥*?)
and % (Rk) where £ is the sigma algebra of the progressive sets over [0, T] x Q.

o ¢ arandom variable in R¥, Z;-measurable.

* We consider the following BSDE
T T
Yt=£+f f(s,Ys,Zs)ds—f ZsdB;, 0=<t=<T, (Ee,f)
t t

* In differential form

+dYt:_f(t,Yt,Zt)dt+thBt, 0<t< T, YT:€,
—dYt:+f(t,Yt,Zt)dt_thBt, (S T, YTzf



Definition 7. A solution to the BSDE (E; ;) is a pair of processes (Y, Z) with val-
ues in R*¥ x R¥*? such that Y is continuous and adapted, Z is predictable and,
P-a.s., t — Z, belongs to L*(0, T), t — f(t,Y;, Z;) belongs to L(0, T) P-a.s. and

T T
Yt:€+f f(r)Yrer)dr_f ZrdBr, OStST
t t

e Two sets of processes

F? (Rk) = {Y e R*: Y continuous and adapted E | sup |Y;?| < +oo}
0<i<T
T
M? (R¥*4) = {Z e R¥?: 7 predictable E f 1 Z,2dt| < +oo}
0

o PB?:= F?x M?

 Is there any chance to solve the problem?

* Yes we can! Easy case: f(t,y,z) = f()



3. Pardoux-Peng’s result

e We will denote by (L) the following assumption :
* There exists A = 0, such that P-a.s., for all 7 € [0, T,

V(y,y’); V(Z)Z/)r |f(t,yyz)—f(t,}/l,z,)|5/1(|y—y,|+|Z—Z,D;
e ¢ and {f(¢,0,0)}o<s<7 are square integrable:

E < 4+o00.

T
|f|2+f |£(,0,0)*dt
0

Theorem 1 (Pardoux-Peng, 1990). Let (L) holds. The BSDE (E; ;) has a unique
solution (Y, Z) € 9B%. Moreover

T
E| sup |Yt|2+f | Z,? dt
0

0=<t=<T

T
scm,T)[E[|é|2+f If(t,0,0)Izdtl,
0

C(/l T) — Ce(212+2l+1)T.



Remark. Under (L), if (Y, Z) solves (E; ;) with Z € M? then Y € . In Pardoux-
Peng’s theorem, we get a unique solution s.t. Z € M2,

e Fortel0,T], t .
Vi=Yo- [ foY.zpdr+ [ zas,
0 0

e Using the Lipschitz assumption on f,

T
e |Yo|+f (Lf(,0,0)| + AlZ 1) dr + sup
0

0<t<T

t
mf Y| dr.
0

t
f Z,dB,
0

e Let us introduce

t
f Z,dB,
0

T
(=|Yo|+f (If(r,0,00|+ Al Z:)dr + sup
0

O<t=<T

* (el?

e Gronwall’s lemma gives

sup Y| < et
0<t<T



e Still true if f has a linear growth
|f(t,y,2| < fi+A(lyl+]zl).

t
Lemma 2. If Y € .2 and Z € M?, then M, = 2[ Y- Z,dBy is a uniformly inte-
0

grable martingale and, there exists a constant ¢ (¢ =3) s.t., forn >0,

T
f IZtlzdtl.
0

2 ¢
E [supo<,<7 |M¢l] < nE [supge,1|Y:l*] + P E

Proof.

e From BDG inequality, (¢ = 3)

E| sup |M;|| < cE[(M)}?] <2cE

0<t<T

T 1/2
(f |Ys|2|Zs|2ds) ]
0

T 1/2
sup || (f IZslzdS)
0

0=<t<T

<2ck

e Use2ab<na®+b*In



Proposition 3 (A priori estimate). Let (Y, Z) be a solution to (E¢ y) with Z € M?Z.
Then, fore >0,

T
E| sup ez‘”IYt|2+f N Z,)* | <4(1+8c%)E
0<t<T 0

T
eZ“T|5|2+ef e*!| f(,0,0)*dt]|,
0

assoonasa=a.:=A+A1+1/2¢) (c =3 works!).

* For the estimate of Pardoux-Peng’s theorem, use € = 1!

Proof.

e Itd’s formula to e**!|Y,|?, a € R.

T
e Compute —f d(e**|Ys]*) and, for0<r<T,
t

T
eZat|Yt|2+f e2as|ZS|2dS
t

T
:eZaT|€|2+f e’ (2Ys- f(s, Yy, Zo) — 2| Yil?) ds — (My — M),
¢



t
where M; = Zf e’*Y,Z.dB;.
0
e fis Lipschitzand 2ab <¢|al*+|b|*/¢

2y f(s,3,2) < 2|yl 1f(s,3,2)| < 2|yl f(5,0,0)| + 21| y|* +2A|y| | z]
<elf(s5,0,0)* +|z|°/2+ (1/e + 24+ 229 |y|*

e Ifa=1/Re)+A+A%),forall0<t<T,

1 T T
ez‘”IYt|2+§f eZ“SIZslzdsseZ“T|€|2+ef e***|£(5,0,0)°ds — (Mr— M), (1)
t t

< Xr—(Mr—M,), (2)

T
where we have set X7 = e?*T|&|% + £f e***| £ (s,0,0)|°ds.
0

e Taking the conditional expectation of (1), we deduce immediately

1 T T
ez‘”lYt|2+5[E(f eZ“SIZSIst‘f/?,;)s[E(eZ“T|€|2+Ef e***|£(s,0,0)°ds| Z;|. (3)
t t



* =0, we have, taking the expectation of (2),

1 T
f eZaS|ZS|2dS
0

E[E <E[X7], (4)

e Using the inequality of the lemma, coming back to (2)

E [sup;eo7 €1 Yel?] < E[X7] + 2E [SUp 0.1 | Ml ]

2c?
<E[Xr]+2nE [Supte[O,T] e*| Yt|2] + T E

T
f eZ(XS|ZS|2dSl
0

e Choose n=1/4 to get, taking the inequality (4)

16¢* T
f eZOCS'ZS'ZdS
0

E < (1+16¢*) E[X7]

1
S [sup *'| Y, ] <E[X7] +

e Finally,

T
[E[supeZ“f|Yt|2]+[Ef | ZsPds| <41 + 8¢ E[X7]
0




Remark.

e Actually, we prove that if ¢ and f(#,0,0) are bounded, then Y is a bounded
process.

e Indeed, (3) gives, fore=1, a=A?+ A +1/2
T
Y < [E(eZ“TI€|2+f ez“slf(s,0,0)lzdSI%),
t

T
1Y, |* < E(eZ“(T‘”Iflz+ f ez““‘”lf(s,0,0)lzdsI%),
r

2
< oA +2/l+1)T(||€”io+ TIf(-,0,0)[%)

Corollary 4. If (Y!, Z1), (Y?, Z?) solves the BSDEs associated to (¢, f1) and (&2, f?)
then, for e >0,

T
E supOStsTez‘”léYtlz+f ez‘”léztlzdt]
0

T
<4(1+8¢%)E eZ“T|6€|2+8f S fI1* (8, Y/, ZF) dt |,
0

where @ = a,:= A3+ A, +1/(2¢), ¢ =3 and 6BlaBla = BlaBla' — BlaBla*.



e A is the Lipschitz constant of f*.

Proof of Pardoux—Peng’s theorem.
e Uniqueness is a direct consequence of the a priori estimate see Corollory 4.
» Existence by a fixed point argument.

e If (U,V)e %2, let us solve the BSDE

T T
Yt:£+f f(s,Us,Vs)ds—f Z;dBs, 0<t<T.
t t

e The solution is given by

T
Y=L €+f f(S;US)Vs)dS
t

T t
=Lk €+f f(s,Us, Vi) ds %)—f f(s,Us, Vi) ds
0 0

[ T ] t t
=E f+[ f(s,Us, Vo) ds +f stBs—f f(s,Us, Vi) ds.
[ 0 I Jo 0



e By Corollary 4, for e >0 and a = 1/(2¢),
T
E| sup eZ“tléYt|2+f ez‘”|5Zt|2dtl
0<t<T 0

T
§4(1+8cz)£Ef e f(t, U, V) - f(t,U, V) *dt
0

e Using the Lipschitz assumption,
f (6, U, V) = f(t, U, V)I? <24 (18U, + 18 Vi)
e We finally get
T
E| sup ezatl(SYt|2+f ezatléztlzdtl
0

0<t<T

T
<4(1+8c%*)2(1v T)A*€E | sup eZ“t|5Ut|2+f ez‘”lcSthzdtl
0

0=<t=<T

e Choose ¢ s.t. 4(1+8¢*)2(1v T)A*e =1/2! a is now fixed



e The map is a contraction w.r.t. the norm on %2

T
I(Y, Z)|13 :=E| sup eZ“f|Yt|2+f ez‘”thlzdt].
0

O<t<T

e What is really used in the proof is

2(y-v) - (f@t,y,20- f(&,¥,2)) <24, ly -y P+ 27, ly—y'llz- 2|

Exercise (For next lecture). Prove that under (L), one has

T T 2
I3 e2‘”|yt|2+f e***| Z|*ds| < CE eZ“T|§|Z+U e“slf(s,0,0)Ids) ]
0 0

C universal constant, a = 1% + A.



4. Linear BSDEs and Comparison Theorem

* In this section, we consider only real-valued BSDEs: k=1

e We will see an explicit formula for linear BSDE

T T
Yt:€+f (aSYS+ZSbS+CS)dS_f stBs, O0<tr<T.
t t

*x  f(t,y,2)=c+a;y+zb;.

e Letus start with c=0 and a =0:
T T
Yt=€+f Zsbsds—f Z.dB;
t t

T t
:f—f 7.dB", B;‘:Bs—f bds.
r 0



e @Girsavov’s theorem

Y, =E"¢|%), dP"=D7dP
t 1 t
Dt:exp(f bs-st——f Ibslzds)
0 2Jo

e In the general case
T r N
Yt:D;I[E(DT (éeff “rdr+f c.eli “’drds) ‘gt)
t
T r s
= (Eeff “rdr+f c.elt “’drds|<%).
t

Proposition 5 (Linear BSDE). Let a, b and c be progressively measurable processes
inR, R and R s.t. a and b are bounded and c € M?. Let & € 12(%7). Then the
solution to the BSDE

T T
Yr=<f+f (asYs+Zsb5+cs)ds—f Z,dB;,, 0<t<T.
t t



is given by
T T N
Yt:Dt"l[E(DT(cfeft “rd’+f cselt “rdrds) ‘%)
t
fasds) ™! ST ara b Radr
:(Dteﬂ"s S) E|Dypéelo “r r+f celo v Dsds‘gt .
t

Proof.

e The assumption (L) is satisfied.
e Set F[ = efot astDt

drt = rt (atdt + bt : dBt)

dYt = —(Cl[Yt + tht + Ct)dt+ thBt
e Integration by parts formula gives

d(Ytr[) = F[dYt+ Ytdr[+ d(Y,F)t
= —Ftctdt+rtZt dBt+ rthbt' dBt



e I,Yin%?and ZeM?, Y,T,+ [, c,Tsds is a martingale and

t
Ytrt+f CSFSdS:[E(érT'Ff
0 0

T
YtFt:[E(chT+f csl“sds|9})
t

T
cI'sds | gt)

e Fundamental remark: If ¢ =0 and c is a nonnegative process then Y; = 0.

Theorem 6 (Comparison theorem). Let (L) holds for (&, f) and (&', f).

Let us assume that P-a.s. ¢ <& and meP-a.e. f(t,Y;,Z,) < f'(t,Y;, Zy). Then,
P-a.s.,
VO<t<T, Y, <Y/

If, in addition, Yo=Y, then{=¢ and f(t,Y,, Z) = f'(t, Y:, Z,).

* The strict comparison theorem is used as follows: if (in addition), P({ < ¢') >0
then Y, < Yj.



Proof.

SetU,=Y/-Y, V;=2,-Z;, { =¢ - We want to see that U; = 0.
We have

T
f (f'(s, Y5, é)—f(S,Ys,Zs))dS—f VsdB; (5)
t

The idea is to linearize the generator

(&Y, Z)—f(5,Ys, Z) = f' (8, Y, Z)— f'(8, Y5, Z) + f'(5, Y5, Z) — [ (5, Y5, Z5)
+Cs 1= f,(sr Ys; Zs) - f(S, Ys; Zs)

Let us define

as= (Y- Y) " (f (s, Y, Z) = £ (s, Yo Z1)) Lo
bs=|Z1= Z| 7 (f' (5, Yo Z) = (5, Y5, Z9) (ZL = Z5) " Liyps0

We can rewrite (5) as

T T
Ut:(+f (a,U;+ Vibs + cg) ds—[ V.d B
t t



e [t follows that, since ( =0 and c=0

T
U, = F;I[E(FT(+f cI';ds | ,@I) >0
t

e If moreover U, =0, then

T
[EFT(+f csl“sdsl:O = (=0, c=0.
0

Remark.
e For real BSDEs, linearization is a powerful tool

* Roughly speaking, sometimes one can get rid of the dependance in z of the
driver.

e If¢ and f(;,0,0) are bounded, we saw that Y is bounded see (3).

e In the real case, we can see that the bound does not depend on the Lipschitz
constant in z, A .



e This easily seen from the formula

T
Yt=D;1[E(DT(€efIT“’d’+f f(s,0,0)eft “"”ds) )gt)
t

1Y) < (I€lleo+ TNF(,0,0)[l00) €™
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1. Review of Previous Lecture

e B Brownian motion in R? on a complete probability space
e f:10,T]xQxRFxRF4 — RF "measurable"

e ¢ Fr—measurable
T T
Yt:«f+f f(s,YS,ZS)ds—f ZidB;, 0<t=<T. (Ee,f)
t t

Theorem 1 (Pardoux-Peng, 1990). If f is Lipschitz w.r.t. (y,z) (uniformly in (t,w))
and

E

<00

T
IE]* + f |£(5,0,0)|°ds
0

the BSDE (E¢ ) has a unique solution s.t. Z € 12

e Main tool: a priori estimate

» If (Y, Z2) is a solution to (E¢ s) and

y-f(t,3,2) < |yl fi + ulyl* + Alyllzl



then, there exists a universal constant C s.t.

T
E| sup ez‘”IYt|2+f e**z,°| < CE
0

O<t<T

T
ezaT|é_‘|2 +f ezatfl?dt] ,
0

assoonas a=A*+u+1/2,

e Linear BSDEs have an explicit solution in the scalar case (Y € R)

T T
Yt:€+f (a; Y+ Z;bs + cg) ds—f Z.dB;
t t

e Y is given by Girsanov’s theorem

T
Yt:D;I[E(DT (fefrT“rdf+f cselr “rd’ds) (%)
t

t 1 t
D, =exp (f bs-st—Ef Ibslzds).
0 0

Theorem 2 (Comparison theorem). If{ <¢' and f < f' then
Viel[0,T), Y,<Y].

Strict version of this result.



2. Markovian BSDEs

Framework

We consider the following SDE

u u
r=0s ["ooies ['oloxan, ceusr
t t

e 0O rv. %, —measurable
o Ifneeded, for0<u<r X’ =E@©0|Z,)

e Now we consider the following BSDE

T T
Y0 = g(x;ﬂ) +f f(s,xt9, Y;ﬂ,zjﬂ)ds—f z¥PdB,, 0<us<T (2
u

u

e The SDE and the BSDE are decoupled



* Fistly, we solve the SDE
x Then, we solve the BSDE

e The generator of the BSDE is given by

F(s,0,5,2) = f (5, X" (), y,2)

e Main idea: Transfer properties of the SDE to the BSDE

e Very simple framework denoted by (L)

e b:[0,T] xR"— R"and o : [0, T] x R* — R™ 4 are continuous and
1. |b(t,x)—b(t,x)|+|o(t,x) -0 (t,x)| < Ax—x|;
2. |b(t,x)|+|o(t,x)| <A +|x)).

e g:R"—RFand f:[0, T] x R” x R¥ x R¥*¢ — R* are continuous and
1. |g(x) - gx"| = Alx—x'|;
2. |ft,x, 3,2 - f(e,x,y, )< A(lx =X+ 1y -y +|z-2);
3. |g@)|+|ft,x,y, 2| <A1 +]1xl+1yl+1zl).



Elementary properties

e For 0 € L>(%,), the SDE (1) has a unique strong solution and

sup |Xt9’ C(1+[E[|9|2]),
O=su=<T

E| sup Xﬁ“—xg”) <CE[10-0'7],
Osus<T ]
! 2
E| sup (X2 —XD% | < Cllx—x1P+1r— 1| (1+]x” +1x'1%)}
Osu=<T

where C depends on T and A.

Proposition 3. For 0 € L2 (%,), the BSDE (2) has a unique solution and, if 0' €
L% (F)),

T
[sup |Yt9’ +f |Zrt'9|2dr <C(1+E[I0F]),

O<us<

t,0 t,0'
vy )+L

where C depends on T and A.

o'|*
E -zt ar

sup
O<u<T

<CE|[0-0'],



e BSDE (2) is associated to

¢:= g(X?Q), F(s,y,2)=f (s X%, y,2)

e We have from (L)

€+ 1F(s,0,0)] 5/1(1+ sup |X§;9|) eL?

O<u<T

e Use Pardoux-Peng’s result, the A priori Estimate for BSDEs and the estimate
on the SDEs
g (x7) =g (X5 || £ (5 X0 000, 20 = p 5 X070, 20°) | sup X0 -X10

O<u<T




3. Markov Property

e [t is well know that under (L), we have the following flow property

5, X0

X =X, r<sst 3)

e We are going to prove that the same is true for Y and Z

e Notation : for s<t,
F=0(N,B,—Bs:s<u<t)

Proposition 4. Ler (t,x) € [0, TIxR". {X.*, Y%, Z}"*} is adapted w.r.t. {F [} <y<r.

t<u<T

In particular, Yf’x is deterministic.

e In the sequel, we will denote by u the function defined by

V(t,x) €0, TI xR",  u(t,x):=Y] " (4)



Proof.
° Wu:BHu_Bt’gLIL/V:gt

t+u

e Let {X,}o<u<7—; be the solution to the SDE
u u
Xu:x+f b(t+r,Xr)dr+f o(t+rX,)dW,, O<u=<T-t.
0 0
* {Xu}OSuST—t is {g;/v}u_adapted
e Forvelt T], we have

v—t v—t
X,,_,;:x+f b(t+ r,X,)dr+f o(t+rX,)dW,
0 0
e Set s=r+t; we have

v—t v v—t v
f b(t+ r,Xr)dr:f b(s, X;_,)ds, f o(t+ r,Xr)dWr:f o(s,Xs_;)dBs,
0 t 0 t

e [t follows that

v v
Xyt = x+f b(S)Xs—t)ds+f o(s,X,_,)dB;, t<v<T
t

t



and by definition of X**

v 14
Xh¥ = x+f b(s,XSt’x)ds+f o (s, X'*)dBs, r<v<T.
t

t

* By uniqueness of solutions to the SDE (1), X,/ X=X, ,€ 9 =ZFL
e For the BSDE, the method is the same

o {(Yy, Z)}o<usT—: solution &V -adapted to

T-t T—t
Yi=8Xr_) + ft+nX,Y, Z)dr - Z.dW,, O<u<T-t,

u u

e We write this BSDE as
T—t
Yoo =8(Xr_p) + fle+rnX, Yr,Zr)dr—f Z.dW,, t<v<T
v

v—t -t

and by s=r+t¢

T T
= g(XT—t) +f f(sy Xs—t: YS—[) Zs—t)ds_f Zs—tdBS) I=svs T
14 v



and since X" = X,_;

T T
=g (X4 +[ F(s X0 Yooy, Zsoy) ds—f Z,dB;, t<v<T.
v v

o Y t,Zy_tbvepr.r) and (Y5, Z0™} yes. 1 solve the same BSDE
o This gives the result since &)V, = F!. O
Proposition 5. u is continuous and

lu(t,x)| = CQA+Ix)),

1/2(

lu(t,x) —u(t', x| < C(|x—x’| +]e-7| 1+|x|+|x’|)).

Proof.
e The growth of u comes from Proposition 3.

* For the regularity, if t' > ¢,

v, Lx _ t'x' x| _ t',x' t, t, LX) .
u(e, ) = u(t,x) = V) =Y =B | Y v = v - v B[ v



¢ For the second term,

/

t t
Y/ =Y+ f fn XY,z dr - f Z"dB,,
t t
e With Holder inequality,
2

E

tl
(Y -y [ = f frn X5 vz dr
t

T
<|t-7|E U £ (r, X2, Y%, 200 | drl .
0
e From the growth of f

E <CL

T T
[ 1rtxe vz ar| = ce 1 sup {lxe e vy [z ar
0 0

O=sr=T
<C(1+Ix*+1x?).

* Finally, for the first one, from the apriori estimate,

2
<E

! I 2 2
B - v v/ —vir| | < lx- v

sup
ref0,T]




* A notational ambiguity
Theorem 6. Let t € [0, T] and 0 € L*(%,). Then

Y =u(t,0) := Y 8.
Proof.

e Suppose first that

!
0= Z xila,, (Aj)i<i<; partition of Q, A; € %, x; € R
i=1

e Let us write (X!, Y/, Z}) instead of (X;™,Y,"™, z/""

0<r<T )OsrsT'

e Fort<r=<T,wehave

Xrt’e = Zi La; X:’ Yrt’e = Zi L, Yri’ er = Zi L Zri'



e Indeed, foreachi and r > t,

X;':xl-+f b(u,X;)du+f o(u, X.)dB,
t

t

e Multiplying by 1,, and summing in i, we get since A; € %,

ZilAin:0+f ZilAib(u,X;)du+f Y 140w X,)dB,
t t

e But) ;14 H(BlaBla;) = H(Y;14, BlaBla;) and

ZilAl.Xf=9+f b(u,zilAl.XL’;)du+f o(u,) 14 X}) dB,
t t
and by definition of X"’

X0 =0+ f b(u, X2 du + f o (u, X19) dB,
t t

e By uniqueness, we get the flow property

ViSrsT, X=X, 10 Xi= XX = X o0,



Arguing in the same way, for each i,

T

Y, =g(XlT)+f f(u,X;,Y,;,Z;)du—f Z,dB,.

r

It follows that (¥;14,Y,,Y.; 14, Z!) solves the following BSDE on [t, T]

T T
Yr’zg(zilAiX;Hf f(u,zilAiX;,Y;,Z;)du—f Z,dB,
T r r r
=g(X;:9)+f fu,x0 v, z) du—f Z! dB,
r r
By uniqueness
YO=Y 1,Y,  ZM=) 1,47,

In particular, for r = ¢,

Yttﬁ = Zi Ly, Yti = Zi Ly, Ytt’Xi = Zi Ly, u(t, x;) = ”(I’Zi 1y xi) = u(t,0).



e For0el?(%)),let 0, — 0 with 0, of the previous form

2

Y0 -Y | | <CE[16,-6%]

E[lu(t,0,) — u(t,0)°’] < CE[16, - 0] .

e Since u(t,0,) = V""", u(t,0) = v*?
Corollary 7. Let t € [0, T] and 0 € 12(%;). Then

vselt, Tl, Y =u(s Xx).

N

Proof.

e By the previous result y
Xy

u(s, X% = v,

s,XSt’e s,XSt'g

e But by definition {(Yr A )}r solves the BSDE

SXt’H T th’e r
Yu:g(XT’ K )+f f(r,Xr' : ,Y,,Zr)dr—f 7.dB,, s<u<T
u u



L

0
By construction, X;** and XY are both solution to the SDE

r r
Xr:Xj'9+f b(u,Xu)du+f o, X,)dBu, s<r<T
N N

By uniqueness
s,XSt'g

vrels, T, X;°° =X

s,Xst’e s,Xst’H

We deduce that {(Yr 7 )}r and {(Yrt’g,Zf’e)}r solve the BSDE

Yu:g(X§9)+fT

u

T
f(r,Xf’e,Yr,Zr)dr—f Z,dB,, s<u<T.

u

It follows that
$,X St 0

Y0 =y = u(s, X9).

N



4. Nonlinear Feynman-Kac’s Formula

e In this section, Y is real-valued, k = 1!

e Let u is a smooth solution to the semilinear PDE
o,u(t,x)+ZLu(t,x)+ f(t,x,u(t,x),Vyiu-o(t,x)) =0, ulTl,.)=g, 5)

where £ is the linear differential operator

1
Lul(t,x) = Etrace(ao*viu(t, x)) + b(t,x) -V u(t, x)

e Verification theorem: by Itd’s formula
(s X5%), Vw0 (5, X77))

solves the BSDE (2)

T T
Y=g (X7)+ f s X5 Y05, 20" ) ds - f Z*dBs, t<r<T,
r

r



where X* stands for the solution to the SDE (1)

S S
XM =x +f b(r,X)dr +j o(r,X/*)dB,, t<s<T.
t t

* A more probabilistic point of view is to construct the solution u to the PDE
from the BSDE

Theorem 8. Under (L), the function u defined by
V(t,x) €0, TIxR",  u(t,x):=Y"

is a viscosity solution to the PDE (5).

e In the linear case, f(f,x,u) = a(t,x)u+ c(t, x), we get (linear BSDE)

T
Ytt,x —F [g (X;X) eftTa(r,X,[’X)dr +f C(S, Xst,x) eftsa(r,Xf'x)dr

t

o

T
~F [g (th:x) eftTa(r,Xf’x)dr +[ C(S, Xst,x) eftsa(r,X,t’x)dr

t

which is the usual Feynman-Kac formula.

e Let us recall the definition of viscosity solution



Definition 8. A continuous function u, with u(T,-) = g, is a viscosity subsolu-
tion (supersolution) if, whenever © — ¢ has a local maximum (minimum) at (z, x)
where ¢ is €12,

0:p(t,x)+ ZL(t,x)+ f(t,x,u(t,x),Ve-o(t,x)) =0, (=0)

A solution is both a sub and a supersolution.

Proof.
e By construction u is continuous and u(7,-) = g.

e Let us show that u is a subsolution.
* Let (¢,x) € [0, T[xR" be a local maximum of u— ¢
* Without loss of generality, we assume that ¢(¢, x) = u(t, x)

* We have to prove that

0,p(t,x)+ L(t,x)+ f(t,x,u(t,x),Vep-o(t,x))=0.



e Ifnot, there exist d >0 and 0 < a < T — t such that

u(s, )= @(s,), 0:p(s, 1)+ Lp(s,y) + f (5,7, uls, 1), Vxp-0(s,)) < =6
assoonas f<s<ft+aand|x—yl<a.
e Consider the stopping time

T=inf{s=¢:| X\ - x|z a} A 1+ ).
o (Y, Z):= (9 (s A7, X53), L= Vo (5, X)) solves

t+a I+a
Y! = (7, X5 + f Lyt {00 + L} (1, X'V dr f 7/dB,
N N
(Y%, 1,<: Z{) solves the BSDE
t+a +a
Yi=Yiia +f lrsrf(r» Xrt,x, Y, Zr) dl’—f Z,dB,
N S

* By the Markov property Y;"* = u(s, X;"*)

+a +a
Vo= u(r, Xo) + f Ler £ (1, X% u(r, X5, 2,) dr f 7, dB,
S N



e By definition of 7, u (7, X;"*) < ¢ (7, X;*) and

F(s X u(s, XY), Vep-o(s, X09)) +{0:0 + Lo} (s, X)) < -6

e Strict comparison: u(t,x) =Y; < Yt’ =@(t,x)

e But u(t,x) = ¢(t,x)! O
Exercise (For next lecture). Prove the nonlinear Feynman-Kac formula in the fol-
lowing setting:
e b:[0,T] xR"— R"and o : [0, T] x R* — R™“ are continuous and
1. |b(t,x)—b(t,x)|+|o(t,x) -0 (t,x)| < Alx—X|;
2. b, x)|+|o(t,x)| <A+ |x]).
e g:R"— RFand f:[0, T] x R” x R x R**?¢ — R* are continuous and
L |f(,x,y,2-ft,xy,2) <A(ly-y1+1z—Z21);
2. |lg@)|+|ft,x,y, 2| <A1 +]1xIP+ |yl +]zl).
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1. Review of the previous lecture

(X"} <s<7 solution to the SDE

N S
xer =t [ b(nxidr- [ o(nxi)an,
r t

o (Y, ZP")},<s<7 solution to the BSDE

T
Y;’x:g(x;th f(rn Xt v,z ) dr - f Z'*dB,
N

e Define the function u by u(t,x) := Y,
o Y/ =u(s, X
e u is a viscosity solution to
ou(t,x)+ZLult,x)+ f(t,x,u(t,x),Vyu-o(t,x)) =0, u(l,)=g,

where £ is the linear differential operator

ZLu(t,x)= 1trace(ao Vzu(t X))+ b(t,x)-V,u(t,x)



2. The monotonicity condition

 Still working with our BSDE

T T
Y, =&+ f f(s, Yy, Z)ds - f Z,dB;, 0<t<T. (Ee 5)
t t

e As already said, what is needed to get a priori estimate is
V- -(Feyn-f6y,2)) <suly-yP+Aly-yllz—2

* Existence and uniqueness under this assumption?

e What about the growth of f w.r.t. y?

1f(t,,2)| = fi+Alzl + @y

* ¢ linear, then polynomial, then arbitrary



Remark.
e If ¢ has not a linear growth, Z € L? does not necessarily imply Y € .#?!

e Uniqueness will be for (Y, Z) € %2 not for Z € 12,

*  We will work with the following set of assumptions called (M): there exist A =0
and peRs.t.

e y— f(t,y,2) is continuous

V=9 (feya-f&y.2)=ply-yP
If(t,y,2)— f(t,y,2) <Alz—2Z2|

Yr>0,

v, (1) = |slllp |f(t,¥,0) = f(£,0,0)| e L'((0, T) x Q)
ylsr

Integrability:

E <00

T
|<f|2+f | £(£,0,0)]?
0

e There is no growth condition on !

e If f is Lipschitz, then p=A and v, (1) = Ar.



Theorem 1 (B., Delyon, Hu, Pardoux and Stoica, 2003). Under (M), BSDE (Eg ;)
has a unique solution (Y, Z) € 9* and

T
E| sup ez‘”IYt|2+f e**'|Z,)*| <CE
0

0<t<T

T
eZ“T|é|2+f e*! f(,0,0)*dt]|,
0

as soonasa=A*+u+1/2.

e Uniqueness follows directly from the a priori estimate.

* The proof of existence is divided into three steps

Proof of Step 1.

e Let us assume that ¢ is bounded and f is bounded

IEl+1f(t,y,2) <M

e We will first prove the result when f does not depend on z.



e More precisely, let V be a given process in M?, we construct a solution to

T T
Yt=€+f f(s,YS,VS)ds—f ZdB,, 0<t<T
t t

* We set h(t,y) = f(t,y,Vy); h is bounded.

e Let p:R¥ — R, be a smooth nonnegative function with support in the unit
ball and s.t.

fp(u)du =1.

* For neN*, we set p,(u) = nkp(nu).

e Let h, defined by

hu(t,y) = pn*x h(t,)(y) =kapn(y—u)h(t, u)du=Lkpn(u)h(t,y—u)du.

* h, is bounded by M



* h, is Lipschitz w.r.t. y

“vyhn(t; y) Z)“ =

prn(u) h(t,y—u)du

st|Vpn(u)|dus Cn.

e By Pardoux-Peng’s theorem, let (Y", Z") € 98° solution to the BSDE

T T
Yt”:5+f hn(r,Yr”)dr—f zZ'dw,, 0<t<T.
t t

* Since h, and ¢ are bounded by M, Y" is bounded:

sup, Supg<,<r Y, =M1+ T):=a

e Letus see that (Y", Z") is a Cauchy sequence.
* We can not use the Lipschitz constant in y!
* Butsince y—y' =y—u—- (' —u)
=) (ha(t,y,2) = ho(2,y',2)) = fpn(u) (y=y)-(h(t,y—w—h(t,y' —w)du
<uly-y'P”.



e We can apply the a priori estimate, a =1/2+2u

T
f ezatlhm_hn|2(t, Ytn)]
0

T
f ez‘”supIhm(t,y)—hn(t,y)ldt].
0 lyl=a

T
E| sup eZ“f|5Yt|2+f e**"16Z,|*dr| < CE
0

0<t<T

<CE

e But y— h(t,y) is continuous and h,(t,-) converges to h(f,-) uniformly on
compact sets and

sup |hp(t,y) — ha(t,y)| <2M
lyl=a

e This shows that (Y", Z") is a Cauchy sequence in 723

e Itis easy to prove that the limit (Y, Z) is a solution!

*  First

E[|Y; - Y,I*] <E[sup,|Y) - Y;|?] Z)dB

- Z| drl



*x and for the nonlinear term

E

T
suptft {h,(r,Y)=h(r,Y,)}dr

Zl

T
f B (r, Y1) = h(r, Y| dr
0

IA

2TE

T
+2T[E[f |h(r,Yr”)_h(r,Yr)|2dr ;
0

*  |ha(r, Y = h(r, Y| < sup)y<, | Ba(r, y) = B(r, ).

* Since h(t,-) is continuous h(t,Y,") — h(t, Y,).

e Let us prove the result in the general case by showing that the map (U,V) —
(Y, Z) where

T T
Y[:€+f f(S,YS,VS)dS—f ZidB;, 0<t=<T
t t

is a contraction.

e This is very easy since f is Lipschitz w.r.t. to z. By the a priori estimate (a =



1/(2¢€) +2p)

T
E| sup eZ“t|5Yt|2+f e?%"\5Z,.12dr| < CeE
0

O<t<T

T
f e f(t, Y, V) - f(t, Y, V;)th]
0

T
< CeA*E f eV, - V!> dt
0

T
< CeA’E | sup ez‘”I6Ut|2+f eZ“t|6Vt|2dtl.
0

O<t<T

[]

* For the last two steps, we assume that u=0
 Ifnot, set Y/ =e!'Y, and Z' = et Z,

o (YH ZM) solves the BSDE

T T
Yt“:€”+f fH(s, Ys”,Zs”)ds—f Z'dB,, 0<t<T,
t

t

where & = éetT and

frey,z)=e'f(t ey etz)—py



e fHsatisfies (M) with u=0!

Proof of Step 2.
e We assume that ¢ and sup;, | ft0 := f(¢,0,0)| are bounded random variables.

e Let r be a positive real such that

1T (1§12, + T | £, < .

e Let 0, be a smooth function such that 0 <60, <1, 0,(y) =1 for |y| < r and
0,(y)=0assoonas |y|=r+1.

n

v and set

e For each n e N*, we denote ¢q,(z) =z

ha(t, 1,2) = 0,(3) (f(1, 1, qu(2) = f°) +f7.

V() vn

* h, is bounded
|ha(2,3,2)| < A+ D)0+ flloo



e h,is A-Lipschitz w.r.t. z

* h, satisfies (M) with a positive constant.
* Itis trivial If |[y|>r+1and |y/|>r+1.

* If |[y'| <r+1. We write
/ _ ! — n Ayv—1 — !
(y=y, ha(t,y,2) = hy(t,y,2)) = Hr(y)nvwm(t) (y=y, (6, y,q.(2) = f(t, ¥, qn(2))

_n e , o
+nvwr+1(f)(0r(y) 0, y=v.[f&, ¥, a.2) ~ f])

* The first term of the right hand side is non positive since (M) is in force
for f with u=0.

* For the second term, we use the fact that 6, is C(r)-Lipschitz, to get,
since |[y'|<r+1,

6,0 -0, (y=y, [f&t, ¥ a2 = f2]) < C) |ly=V | |ft, ¥, qu(2) = 1
CrAn+w,a @) |y-y[,

IA



and thus

nv Y, ()

The pair (¢, h,,) satisfies the assumptions of Step 1.
e Let (Y", Z™) be the solution to the BSDE associated to (&, h,,)

e Let us notice that ¢ is bounded and that

(y,hn(t,3,2)) <1yl | £, + Alylzl.

Y is bounded and more precisely,

VYneN*, Vi, Y| <.

* We have also from the a priori estimate

sup, [ Z" ||y <0

6,0 -0, (y=y,[f&, ¥, qn2) - f2]) < CHA+Dn|y-y|*.

(1)



e Thus (Y", Z") is a solution to the BSDE associated to (¢, f,,) where

(6, 3,2) = (f(t,y,qu(2) = f)) + 1)

l//r+1(t) vn

* We made some progress since f;, satisfies (M) with u = 0!

e Setting U =Y"" —Yy", V = Z"" — 7" and using the assumptions on f,,; we
have

1 T
62121,‘|(]t|2_i__‘/v 82/123|VS|2dS
2 J:
r 2 r 2
< 2f NS Us, fuei (8, Y Z) = fu (s YS”,ZS”)>ds—2f eV (U, VidBy).
t t
* But |U|ly < 21 so that

T
2 1 2
e2/'l [llrtlz_i_if 62/1 Sl‘rslzds
t

T T
< 4r f VS| fori (5, Y7, Z1) = £ (5, Y7, Z0") | ds -2 f V5 (U, V,dBy),
0 t



e Using the BDG inequality, we get, for a constant C depending only on A and
T,

T T
E suptlUt|2+f \V.?ds| < CrE f |furi (8 Y, Z0) = fu(s, Y, 21| ds| .
0 0

e Finally, since || Y"|, < r, we have

|fn+i (S; st; an) - fn (3; st» an)| <27 |an| 1|Zs”|>n+2A |Zgn| 11//,+1(s)>n+21//r+1(S)lw,+1(s)>n;

e The conclusion is the following: the integrability of vy, is enough to show that
(Y",Z") is a Cauchy sequence!
e [t is easy to check that the limit is a solution. O

Proof of the third Step.

e For each neN",

En=aqn©),  fut,y,2=f(t,y,2— ) +aa(f)).



o (&, fu) satisfies the assumptions of Step 2.

e By the a priori estimate
E|sup, |v/* - v} +(f |z = z1| ds)l
0

T 2
< CLt |€n+i_€n|2+[) |qn+l(ft0)_qn(f;))| dt ’

where C depends on T and A.

e (Y, Z") is a Cauchy sequence and the limit is a solution. O

e Actually, the fact that ¢ and f(¢,0,0) are square integrable is not really needed
Theorem 2. Under (M) (without the integrability), if for some p > 1,

T p
&7 + ( fo If(s,0,0)Ids)

then BSDE (E¢ ) has a unique solution (Y, Z) € 98P i.e. s.t.

T
sup Y|P + (f IZSIst)
0

0=t=T

E <00

E <00




3. Infinite horizon BSDEs

Let us consider the BSDE

T T
Y=+ f Fs, Yoy Z5) ds— f Z.dB,
t t

We want to replace the deterministic terminal time T by a stopping time 7

* 7 not necessarily bounded !

In the talk, I will consider only the case T = +oo.

* This related to elliptic PDEs in the whole space.

Roughly speaking, we want to deal with

Y, = f f(s,Ys, Z)ds— f Z,dB,, t=0. 2)
t t

A solution is a couple of progressively measurable processes s.t.,

T T
Vi<T, Y, = YT+f fs, YS,Zs)ds—f Zsd By
t t



* [ will keep the non correct writing!

e The assumption on the generator are the following : f : [0, T]xQxRFxR¥4 —
Rk

y — f(t,,z) is coninuous

Lipschitz in z:
|f(tyyrz) _f(t»y)zl)l S/l"lz_zll

* Monotone in y

- (f&. 32 - f&,y2))<uly-yP

For the integrability, we assume that
|f(£,0,0)| <M

Theorem 3 (Darling and Pardoux, 97). If A*+2u <0, BSDE (2) has a unique solu-
tion s.t.

E U eV (12 +1 Zy?) ds| < o0
0



For each € > 0,

E suptzoe_“le|2+f e‘“(le|2+|Zs|2)ds < 00
0

e Advantage: multidimensional result
e Drawback: yu< —212/2!
e Proof: a priori estimate

Theorem 4 (B. and Y. Hu, 98 — M. Royer, 04). In the one dimensional case, if
u <0, BSDE (2) has a unique solution s.t. Y is bounded and Z € L*((0, T) x Q) for
all T.

e Advantage: u < 0 which is reasonable from the PDE point of view

e Drawback: one dimensional

Proof.

e The main argument is to get rid of z by linearization.



* Roughly speaking, we will study
T T
Y:= YT+f fs, Ys,Zs)ds—f Zd By
T t T
= YT+f (fGs, YS,O)+ZSbS)ds—f Z;dB;
t r

T T
= Yy + f f(s,Ys,0)ds — f ZdB}
t t

e And apply Girsanov’s theorem

e Let us start with uniqueness.

e (Y,Z)and (Y', 7)) are two solutions with Y and Y’ bounded.

 It6-Tanaka formula to compute det’|6Y| gives with sgn(y) = —1,<0+ 1,59
d(e"'16Y,l) = e (ul6Y;| —sgn(6 Y F; +sgn(6Y) Z,dB; + dL,),

where L is the local time at 0 of Y and where we have set

Ft = f(tr Yt)Zt) _f(t) Y;)Z;)



¢ Remember that we compute — [ tT so that

T

T
e!' 6| =e“T|6YT|+f et (sgn((SYS)FS—maYSnds—f
t

t

T
e”ssgn(6Ys)6stBs—f e dL,
t

T T
< e'|5Yy| +f e (sgn(6 Ys) Fs — pl6 Yyl) ds—[ et *sgn(6Y,)6 Z;d By
t t

e We write F, as the sum

Fi=(f(s Y, Z) - (s, Y, Z))+ (f(s, Y], Z) — f(s, Y], Z))

o Since §Y,(f(s,Ys, Zo) — f(s, Y], Z)) < uld Y;|*, we have

sgn(8Yy) (f(s, Y, Z9) — (s, Y, Zg)) < pl6 Yl

e Moreover, we define

Y Z) - f(s, Y, Z)
o |<SZS|2

5Z L5250



so that

ZSbS = f(S) YS/) Zs) - f(S, YS,) Z;)
e Putting things together, we get
T T
e’|6Y,| < et 1|5 Y| + f et *sgn(6Y)6 Zbgds — f et *sgn(6Y,)6 Zyd B
t t
T
<e'5Yr| + f e"sgn(6Y;)6 Z,dB;
t

where Bf = B;— [ b, dr
e By Girsavov’s theorem (on [0, T]), b is bounded

|6Yt| = eM(T—t) E* (|6YT| |g3t) < eN(T—t)ZM’ |(5Yt| <0= ]llm eu(T—t)ZM

e [td’s formula gives 6 Z = 0.

e Existence: same approach



Let (Y, Z™) be the solution to the BSDE

n n
Y = 0+f fs, YS”,ZS”)ds—f Z'dB,, 0<t<n.
t t

Fort=n, Y"=0,Z'=0.

Let us prove that Y,"” is bounded. Arguing as before,

ety < f et (sgn(Y) f(s, Y], Z! — plY) - f et sgn(Y") Z!"d B
t t

Splitting

f(sy st) Zf) = f(SJO) O) + f(sy st) O) - f(syoy O) + f(sr st; an) - f(sy YSn) 0)
= f(5,0,0)+ f(s,Y/",0) — f(5,0,0) + Z'b}

We have, since sgn(Y;") (f(s, Y*,0) — f(s,0,0)) < pl Y/,

n n
et Y] < f e f(5,0,0)|ds — f eMsgn(Y") Z!'dB!
t t
M
S —_—
u

n
(e —et) —f eMsgn(Y) Z'dB!
t



e Taking the conditional expectation, we get

M
1Y/'| < —.

|
e In the same way, for t<n<m,
m

ety - Y/ sf

n

n
e”slf(s,0,0)Ids—f et’sgn(Y" - Y/ (Zsm—Zs”) dB""
t

Y - Y < Meﬂ("—”.

| ]

e Y"is a Cauchy sequence and ... we get a solution.
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