Calculs d'incertitudes

Exercice 1. Écrire les résultats et les incertitudes absolues avec le bon nombre de chiffres significatifs.

1. G = 845.74, $\Delta G = 2.65$;

4. G = 0.01863, $\Delta G = 0.00023$;

- 2. G = 11676, $\Delta G = 94.4$;
- 3. $G = 11676, \Delta G = 98.1;$

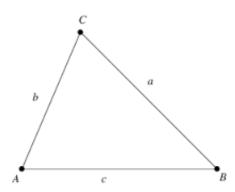
5. G = 10.14617, $\Delta G = 0.214$.

Exercice 2. Calculer les dérivées partielles de la fonction $f(x, y, z) = xy^2\sqrt{z}$ au point (1, 2, 4) puis celles de la fonction $g(x, y, z) = \frac{x^3y}{z}$ au point (1, 1, 2).

Exercice 3. On considère un cylindre creux de diamètre extérieur D et de diamètre intérieur d; on mesure

$$d = 19.5 \pm 0.1 \, mm$$
 et $D = 26.7 \pm 0.1 \, mm$.

Calculer l'épaisseur e du cylindre en précisant l'incertitude absolue et l'incertitude relative.


Exercice 4. La fréquence de résonance d'un circuit RLC est donnée par la formule : $f = \frac{1}{2\pi\sqrt{LC}}$.

Calculer la fréquence de résonance en précisant l'incertitude absolue et l'incertitude relative pour les mesures suivantes $L=0.4\pm0.01~H$ (henry) et $C=800\pm1~\mu F$ (farad).

Exercice 5. Lorsqu'on lance depuis le sol un objet avec une vitesse v faisant un angle α avec l'horizontale la hauteur maximale h atteinte par l'objet est donnée par $h = \frac{v^2 \sin^2(\alpha)}{2a}$.

Déterminer la hauteur maximale de l'objet en précisant les incertitudes absolues et relatives pour les mesures $v = 3.0 \pm 0.1 \ m.s^{-1}$, $\alpha = 1.00 \pm 0.05 \ rad$, $g = 9.81 \pm 0.01 \ m.s^{-2}$.

Exercice 6. Un géomètre effectue des mesures sur un terrain de forme triangulaire. Il a relevé les valeurs suivantes : $c = 120.142 \pm 0.001 \ m$, $b = 110.214 \pm 0.001 \ m$ et $A = 20.45 \pm 0.01 \ gon$ (grade).

- 1. Le géomètre calcule la distance a via la formule : $a^2 = b^2 + c^2 2bc\cos(A)$. Calculer a en précisant l'incertitude absolue et l'incertitude relative.
- 2. La surface du terrain est donnée par $S=\frac{1}{2}bc\sin(A)$. Déterminer la surface S en donnant les incertitudes absolues et relatives.

Exercice 7. On considère un cylindre de béton de diamètre $d=15.8\pm0.1~cm$ et de hauteur $h=32\pm0.1~cm$. La masse du cylindre est $m=15.2\pm0.1~kg$. Déterminer la masse volumique ρ du béton en précisant l'incertitude absolue et l'incertitude relative.