MATH602: Intégration

Contrôle nº 1, durée 2 heures.

Lundi 26 mars 2018.

Les documents, les calculatrices et les téléphones portables sont interdits.

Exercice 1 (Cours et applications directes, 5 points).

- 1. Donner la définition d'une tribu.
- 2. Soient (E, \mathcal{A}, μ) un espace mesuré et $B \in \mathcal{A}$ tel que $0 < \mu(B) < +\infty$.
 - (a) Montrer que l'application μ_B définie sur \mathcal{A} par

$$\mu_B(A) := \frac{\mu(A \cap B)}{\mu(B)}$$

est une mesure de probabilité sur (E, A).

- (b) Sur $(\mathbf{N}, \mathcal{P}(\mathbf{N}))$, on considère $\mu = \sum_{k \geq 1} 2^{-k} \delta_k$ et $B = \{2k, k \in \mathbf{N}\}$. Calculer $\mu(B)$ et, pour tout $k \in \mathbf{N}$, $\mu_B(\{k\})$. En déduire l'expression de μ_B .
- 3. On pose, pour tout $x \ge 1$, $f(x) = \sum_{n\ge 1} ne^{-nx}$. Calculer $\int_{[1,+\infty[} f(x) \lambda(dx), \lambda \text{ désignant la mesure de Lebesgue sur } \mathbf{R}$.

Exercice 2.

1. Soit $(\mu_k)_{k\geq 0}$ une suite de mesures positives sur (E, A) telle que, pour $A \in A$ et $k \in \mathbb{N}$, $\mu_k(A) \leq \mu_{k+1}(A)$. On pose, pour $A \in A$, $\mu(A) = \sup_{k\geq 0} \mu_k(A)$.

Montrer que μ est une mesure sur (E, \mathcal{A}) .

2. Sur $(\mathbf{N}, \mathcal{P}(\mathbf{N}))$, on définit, pour tous $j \in \mathbf{N}$ et $A \subset \mathbf{N}$,

$$\nu_j(A) = \operatorname{card}(A \cap [j, +\infty[) \quad \text{si A est fini,} \qquad \nu_j(A) = +\infty \quad \text{sinon}.$$

- (a) Montrer que, pour tout $j \in \mathbb{N}$, ν_j est une mesure positive sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.
- (b) Montrer que, pour tout $A \subset \mathbf{N}$ et tout $j \in \mathbf{N}$, $\nu_j(A) \geq \nu_{j+1}(A)$.
- (c) On pose, pour $A \subset \mathbf{N}$, $\nu(A) = \inf_{j \geq 0} \nu_j(A)$. Calculer $\nu(\mathbf{N})$ et, pour tout entier k, $\nu(\{k\})$. ν est-elle une mesure positive?

Exercice 3. Soient (E, \mathcal{A}, μ) un espace mesuré et $f: E \longrightarrow \mathbf{C}$ une fonction mesurable.

1. (a) Montrer que

$$\forall x \in E, \qquad |f(x)| = \sum_{n \in \mathbb{Z}} |f(x)| \, \mathbf{1}_{2^n \le |f(x)| < 2^{n+1}}.$$

(b) En déduire que

$$\int_{E} |f(x)| \, \mu(dx) = \sum_{n \in \mathbf{Z}} \int_{E} |f(x)| \, \mathbf{1}_{2^{n} \le |f(x)| < 2^{n+1}} \, \mu(dx).$$

2. Montrer que f est intégrable par rapport à μ si et seulement si

$$\sum_{n \in \mathbf{Z}} 2^n \mu \left(\left\{ x \in E : 2^n \le |f(x)| < 2^{n+1} \right\} \right) < +\infty.$$

3. Soit $\alpha > 0$. Montrer que la fonction $x \longmapsto x^{-\alpha} \mathbf{1}_{[1,+\infty[}(x)$ est intégrable par rapport à la mesure de Lebesgue si et seulement si $\alpha > 1$.