MATH703: Martingales et Chaînes de Markov

Contrôle continu $n^o 1$: rattrapage

Documents autorisés : polycopié de cours, table des lois usuelles

Lundi 11 décembre 2017.

Exercice 1. Soient X et Y deux variables aléatoires indépendantes, X suivant la loi de Bernoulli de paramètre 0 et <math>Y la loi $\mathcal{N}(0,1)$.

Calculer $\mathbb{E}[\cos(XY) | Y]$ puis $\mathbb{E}[\cos(XY)]$. Pensez à la fonction caractéristique de Y pour la deuxième partie de la question.

Exercice 2. Soient $(X_k)_{k\geq 0}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi exponentielle de paramètre 1/2 et N une variable aléatoire à valeurs dans \mathbf{N} indépendante des $(X_k)_{k\geq 0}$. On pose

$$P = X_0 \times X_1 \times \ldots \times X_N = \prod_{i=0}^N X_i.$$

- 1. Calculer $\mathbb{E}[P | N]$.
- 2. En déduire $\mathbb{E}[P]$ lorsque N suit la loi de Poisson de paramètre $\lambda > 0$.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi de Bernoulli de paramètre $0 . On pose <math>S_0 = 0$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et, pour $n \geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad \mathcal{F}_n = \sigma(X_1, \ldots, X_n).$$

- 1. (a) Montrer que $(S_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -sous-martingale.
 - (b) Donner la décomposition de Doob de $(S_n)_{n\geq 0}$.
- 2. Pour $n \ge 0$, on pose $Z_n = 2^{S_n} (p+1)^{-n}$.
- (a) Montrer que $(Z_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale convergeant presque sûrement vers une variable aléatoire Z_{∞} positive.
 - (b) En écrivant $Z_n = \exp(S_n \ln 2 n \ln(p+1))$, montrer $Z_\infty = 0$ presque sûrement.
- 3. Soit $a \in \mathbb{N}^*$. On considère le temps d'arrêt $T = \inf\{n \geq 0 : S_n \geq a\}$.
 - (a) Préciser $\lim_{n\to\infty} S_n$.
 - (b) En déduire que que T est fini presque sûrement puis que $\mathbb{E}\left[(p+1)^{-T}\right]=2^{-a}$.