MATH703: Martingales et Chaînes de Markov

Contrôle continu nº 1

Documents autorisés : polycopié de cours, table des lois usuelles

Vendredi 16 novembre 2018.

Exercice 1. On rappelle que si Z suit la loi $\mathcal{N}(0, \sigma^2)$,

$$\forall s \in \mathbf{R}, \qquad \mathbb{E}\left[e^{sZ}\right] = e^{\sigma^2 s^2/2}.$$

Soient X et Y deux variables aléatoires indépendantes; la variable aléatoire Y suit la loi $\mathcal{N}(0,1)$ et la loi de X est donnée par $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1/2$.

Calculer $\mathbb{E}\left[e^{XY} \mid Y\right]$ puis $\mathbb{E}\left[e^{XY}\right]$.

Exercice 2. Soient $(X_k)_{k\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi de Bernoulli de paramètre 0 et <math>N une variable aléatoire indépendante des $(X_k)_{k\geq 1}$ suivant la loi de Poisson de paramètre $\lambda > 0$. On pose $S_0 = 0$ et, pour $n \geq 1$, $S_n = X_1 + \ldots + X_n$.

Soit u un réel strictement positif. Calculer $\mathbb{E}\left[u^{S_N} \mid N\right]$ puis $\mathbb{E}\left[u^{S_N}\right]$.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires de carré intégrable indépendantes et identiquement distribuées. On note μ la moyenne de X_1 et σ^2 sa variance. On pose $S_0=0$, $M_0=0$, $\mathcal{F}_0=\{\emptyset,\Omega\}$ et, pour $n\geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad M_n = S_n - n\mu, \qquad \mathcal{F}_n = \sigma(X_1, \ldots, X_n).$$

- 1. Montrer que $(M_n)_{n\geq 1}$ est une martingale par rapport à $(\mathcal{F}_n)_{n\geq 0}$.
- 2. Montrer que $(M_n^2)_{n\geq 0}$ est une sous-martingale.
- 3. Montrer que $(M_n^2 n\sigma^2)_{n\geq 0}$ est une martingale.
- 4. En déduire la décomposition de Doob de la sous-martingale $(M_n^2)_{n>0}$.

Exercice 4. Soient $0 et <math>(X_n)_{n \ge 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi $\mathbb{P}(X_1 = 1) = p$, $\mathbb{P}(X_1 = -1) = 1 - p$. On pose $S_0 = 0$, $M_0 = 1$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et, pour $n \ge 1$,

$$S_n = X_1 + \ldots + X_n, \qquad M_n = \left(\frac{1-p}{p}\right)^{S_n}, \qquad \mathcal{F}_n = \sigma(X_1, \ldots, X_n).$$

- 1. (a) Montrer que $(M_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale.
 - (b) Justifier brièvement l'existence de $\lim_{n\to\infty} M_n$
- 2. Soient a et b deux entiers strictement positifs. On considère le temps d'arrêt

$$T = \inf\{n \ge 0 : S_n = -a \text{ ou } S_n = b\}.$$

- (a) Préciser $\lim_{n\to\infty} (S_n/n)$ ainsi que $\lim_{n\to\infty} S_n$ et $\lim_{n\to\infty} M_n$.
- (b) En déduire que T est fini presque sûrement.
- (c) Quelles sont les valeurs prises par S_T ?
- (d) Préciser, pour tout entier n, $\mathbb{E}[M_{n \wedge T}]$.
- (e) En déduire la valeur de $\mathbb{P}(S_T = b)$.