Construction du Mouvement Brownien.

L'objectif est ici de construire le mouvement brownien de façon élémentaire comme processus gaussien de covariance $s \wedge t$. Pour ce faire, nous utiliserons la base de Haar de L²([0, 1]).

1. Processus gaussien et mouvement brownien.

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et T un ensemble non vide; dans la plupart des cas, $T = \mathbb{N}, T = \mathbb{R}_+$ ou T = [0, 1]. On considère, pour tout $t \in T$, une application $X_t : \Omega \longrightarrow \mathbb{R}$.

Définition. $X = \{X_t\}_{t \in T}$ est un processus stochastique (réel) si, pour chaque $t \in T$, X_t est une variable aléatoire réelle.

X est un processus gaussien si, pour tout $(t_1, \ldots, t_n) \in T^n$, $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$, la variable aléatoire réelle $\lambda_1 X_{t_1} + \ldots + \lambda_n X_{t_n}$ est gaussienne.

Un processus aléatoire est donc une famille de variables aléatoires. Remarquons également que lorsque T est un ensemble fini, la définition d'un processus gaussien n'est rien d'autre que celle d'un vecteur gaussien.

On appelle moyenne et covariance d'un processus gaussien X les fonctions $m:T\longrightarrow \mathbb{R}$ et $C:T\times T\longrightarrow \mathbb{R}$ définies par

$$m(t) = \mathbb{E}[X_t], \qquad C(t,s) = \mathbb{E}[X_t X_s] - \mathbb{E}[X_t] \mathbb{E}[X_s].$$

X est dit centré si $m \equiv 0$.

Définition. Un processus stochastique $B = \{B_t\}_{t \geq 0}$ est un mouvement brownien si :

- (i) $B_0 = 0$;
- (ii) pour tout t > 0, B_t a pour loi $\mathcal{N}(0,t)$;
- (iii) pour tous $0 \le t_1 \le t_2 \le \ldots \le t_n$, $B_{t_n} B_{t_{n-1}}, \ldots, B_{t_2} B_{t_1}$ sont indépendantes;
- (iv) $t \longmapsto B_t(\omega)$ est continue sur \mathbb{R}_+ pour tout $\omega \in \Omega$.

Un processus vérifiant la propriété (iv) de la définition précédente est dit à trajectoires continues.

Il n'est pas évident à priori qu'un tel processus existe et nous allons en donner une construction s'appuyant sur les processus gaussiens. Commençons par établir la proposition suivante.

Proposition 1. Si B est un processus gaussien centré, de covariance $s \wedge t$, à trajectoires continues tel que $B_0 = 0$ alors B est un mouvement brownien.

Démonstration. Soit B un processus gaussien, centré, de covariance $s \wedge t$, à trajectoires continues tel que $B_0 = 0$. Si t > 0, B_t est une variable gaussienne centrée de variance $t \wedge t = t$. Reste donc à montrer l'indépendance des accroissements. Puisque B est un processus gaussien $(B_{t_n} - B_{t_{n-1}}, \ldots, B_{t_2} - B_{t_1})$ est un vecteur gaussien centré. Il suffit donc de montrer l'orthogonalité pour obtenir l'indépendance. Or, si $s \leq t \leq u \leq v$,

$$\mathbb{E}[(B_v - B_u)(B_t - B_s)] = \mathbb{E}[B_v B_t] - \mathbb{E}[B_u B_t] - \mathbb{E}[B_v B_s] + \mathbb{E}[B_u B_s] = t - t - s + s = 0.$$

B est bien un mouvement brownien.

2. Base de Haar.

Construisons une base orthonormée de l'espace de Hilbert $L^2([0,1])$.

Pour tout entier n, désignons par $D_{n,k}$, $k=0,\ldots,2^n-1$, le $k^{\rm e}$ intervalle dyadique d'ordre n de [0,1] soit $D_{n,k}=[k2^{-n},(k+1)2^{-n}[$ et par \mathcal{D}_n l'espace vectoriel engendrée par les fonctions $\mathbf{1}_{D_{n,k}}$, $k=0,\ldots,2^n-1$. Pour n fixé, les intervalles $D_{n,k}$ sont disjoints et, puisque $D_{n,k}=D_{n+1,2k}\cup D_{n+1,2k+1}$, on a $\mathcal{D}_n\subset \mathcal{D}_{n+1}$. Montrons que $\mathcal{D}=\mathrm{Vect}(\mathcal{D}_n, n\in\mathbb{N})$ est dense dans $\mathrm{L}^2([0,1])$.

Soit f une fonction continue sur [0,1]. Pour tout entier n, notons $f_n(x) = f\left(2^{-n}[2^nx]\right)$; $(f_n)_{n\in\mathbb{N}}$ converge vers f uniformément sur [0,1] puisque $||f_n-f||_{\infty} \leq \omega_f\left(2^{-n}\right)$. La convergence a également lieu dans $L^2(\mathbb{R}_+)$ car $||f_n-f||_2 \leq ||f-f_n||_{\infty}$ et, comme, pour $x \in [0,1[$,

$$f_n(x) = \sum_{k=0}^{2^n - 1} f\left(k2^{-n}\right) \mathbf{1}_{\left[k2^{-n}, (k+1)2^{-n}\right]}(x) + f(1) \mathbf{1}_{\left\{1\right\}}(x) = \sum_{k=0}^{2^n - 1} f\left(k2^{-n}\right) \mathbf{1}_{D_{n,k}}(x),$$

f est limite dans $L^2([0,1])$ d'une suite de fonctions de \mathcal{D} ; les fonctions continues étant denses dans $L^2([0,1])$ il en va de même de \mathcal{D} .

Notons u la fonction réelle $u(t) = \mathbf{1}_{[0,\frac{1}{2}[}(t) - \mathbf{1}_{[\frac{1}{2},1[}(t))$. Pour tout $t \in [0,1]$, posons $u_0(t) = \mathbf{1}_{[0,1[}(t))$ et, pour tous $n \geq 0$ et $0 \leq k \leq 2^n - 1$, $u_{2^n+k}(t) = u(2^nt - k)$ soit encore

$$u_{2^{n}+k}(t) = \mathbf{1}_{D_{n+1,2k}}(t) - \mathbf{1}_{D_{n+1,2k+1}}(t) = \begin{cases} 1, & \text{si} \quad k \, 2^{-n} \leq t < (2k+1) \, 2^{-(n+1)}, \\ -1, & \text{si} \quad (2k+1) \, 2^{-(n+1)} \leq t < (k+1) \, 2^{-n}, \\ 0, & \text{sinon.} \end{cases}$$

Les fonctions $(u_p)_{p\in\mathbb{N}}$ forment un système orthogonal dans $L^2([0,1])$. En effet, pour $p\geq 1$, $\int_0^1 u_p(t)\,dt=0$ de sorte que u_p et u_0 sont orthogonales. Soient q>p>0. Notons p=(n,k) avec $2^n\leq p<2^{n+1}$ soit $n=[\ln(p)/\ln(2)]$ et $k=p-2^n$; de même m=(q,l). Si m=n alors $u_p(x)u_q(x)=0$ pour tout $x\in[0,1[$ et sont donc orthogonales. Supposons m>n. $u_p=u_{2^n+k}$ est constante sur les intervalles dyadiques d'ordres n+1, $D_{n+1,i}$, $i=0,\ldots,2^n-1$ donc sur tout intervalle dyadique d'ordre supérieur. En particulier, u_p est constante sur $\{x\in[0,1]:u_q(x)\neq 0\}=D_{m,l}$. Comme u_q est centrée, u_p et u_q sont orthogonales.

Montrons par récurrence que, pour tout $n \in \mathbb{N}$, $D_n = H_n$ où H_n est l'espace vectoriel engendré par les 2^n premières fonctions u_p soit $H_n = \mathrm{Vect}\,(u_p : 0 \le p < 2^n)$. Pour n = 0, c'est évident. Supposons l'égalité vrai pour $n \ge 0$. Trivialement, $H_{n+1} \subset D_{n+1}$. D'autre part, l'hypothèse de récurrence implique que

$$H_{n+1} = \text{Vect}(D_n, u_p, 2^n \le p \le 2^{n+1} - 1)$$
.

Pour tout $k \in \{0, \dots, 2^n - 1\}$, $\mathbf{1}_{D_{n,k}} = \mathbf{1}_{D_{n+1,2k}} + \mathbf{1}_{D_{n+1,2k+1}}$ et $u_{2^n + k} = \mathbf{1}_{D_{n+1,2k}} - \mathbf{1}_{D_{n+1,2k+1}}$; donc $u_{2^n + k} + \mathbf{1}_{D_{n,k}} = 2 \mathbf{1}_{D_{n+1,2k}}$ et $-u_{2^n + k} + \mathbf{1}_{D_{n,k}} = 2 \mathbf{1}_{D_{n+1,2k+1}}$ ce qui montre l'égalité.

On obtient donc une base orthonormée de $L^2([0,1])$ en considérant, pour tout entier p, $h_p(t) = u_p(t)/\|u_p\|_2$ soit $h_0(t) = \mathbf{1}_{[0,1[}(t)$ et pour $n \in \mathbb{N}$ et $k = 0, \dots, 2^n - 1$,

$$h_{2^n+k}(t) = \begin{cases} 2^{\frac{n}{2}}, & \text{si} \quad k \, 2^{-n} \le t < (2k+1) \, 2^{-(n+1)}, \\ -2^{\frac{n}{2}}, & \text{si} \quad (2k+1) \, 2^{-(n+1)} \le t < (k+1) \, 2^{-n}, \\ 0, & \text{sinon.} \end{cases}$$

En particulier, pour toutes fonctions f et g de carré intégrable sur [0,1],

$$\int_0^1 f(x)g(x) dx = \sum_{p>0} \int_0^1 f(x)h_p(x) dx \int_0^1 g(x)h_p(x) dx,$$
 (1)

cette dernière série étant absolument convergente.

3. Construction du mouvement brownien.

Construisons d'abord un mouvement brownien sur [0,1]. Intégrons les fonctions de la base de Haar pour obtenir la base de Schauder de l'espace de Cameron–Martin

$$\psi_p(t) = \int_0^t h_p(x) \, dx = \int_0^1 \mathbf{1}_{[0,t]}(x) h_p(x) \, dx, \qquad t \in [0,1], \quad p \in \mathbb{N}.$$

Le graphe de la fonction ψ_{2^n+k} est le triangle de base $[k2^{-n},(k+1)2^{-n}]$ et de hauteur $2^{-\frac{n}{2}-1}$ et $\psi_0(t)=t$.

Soit $(\xi_n)_{\mathbb{N}}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées suivant la loi gaussienne centrée réduite. On pose, pour tout $n \geq 0$, tout $t \in [0, 1]$ et tout $\omega \in \Omega$,

$$B_t^{(n)}(\omega) = \sum_{0 \le k \le 2^n} \psi_k(t) \, \xi_k(\omega), \qquad X_t^{(n+1)}(\omega) = B_t^{(n+1)}(\omega) - B_t^{(n)}(\omega),$$

et
$$X_t^{(0)}(\omega) = B_t^{(0)}(\omega) = t \, \xi_0(\omega)$$
.

Pour tout $k=0,\ldots,2^n-1$ et tout $t\in[0,1],$ $|\psi_{2^n+k}(t)|\leq 2^{-\frac{n}{2}-1}$ et les fonctions ψ_{2^n+k} ont des « supports » disjoints ; par suite, comme $X_t^{(n+1)}=\sum_{0\leq k<2^n}\psi_{2^n+k}(t)\,\xi_{2^n+k},$

$$\sup\nolimits_{t \in [0,1]} \left| X_t^{(n+1)} \right| = 2^{-\frac{n}{2} - 1} \max\nolimits_{0 \le k < 2^n} |\xi_{2^n + k}|.$$

Par indépendance, notant $A_n = \{\omega \in \Omega : \max_{0 \le k < 2^n} |\xi_{2^n + k}| > \sqrt{2n} \}$

$$\mathbb{P}(A_n) = 1 - \mathbb{P}\left(\max_{0 \le k < 2^n} |\xi_{2^n + k}| \le \sqrt{2n}\right) = 1 - \left(1 - \mathbb{P}(|\xi_0| > \sqrt{2n})\right)^{2^n}.$$

Or $1 - (1 - a)^n \le na \text{ si } 0 < a < 1$; donc

$$\mathbb{P}\left(\max_{0 \le k < 2^n} |\xi_{2^n + k}| > \sqrt{2n}\right) \le 2^n \, \mathbb{P}\left(|\xi_0| > \sqrt{2n}\right) = 2^{n+1} \, \frac{1}{\sqrt{2\pi}} \int_{\sqrt{2n}}^{+\infty} e^{-\frac{x^2}{2}} \, dx.$$

D'autre part,

$$\int_{\sqrt{2n}}^{+\infty} e^{-\frac{x^2}{2}} dx \le \int_{\sqrt{2n}}^{+\infty} \frac{x}{\sqrt{2n}} e^{-\frac{x^2}{2}} dx = \frac{e^{-n}}{\sqrt{2n}},$$

et par conséquent

$$\mathbb{P}\left(\max_{0 \le k < 2^n} |\xi_{2^n + k}| > \sqrt{2n}\right) \le \frac{1}{\sqrt{\pi n}} \left(\frac{2}{e}\right)^n.$$

Par Borel-Cantelli, $\mathbb{P}(\limsup A_n) = 0$. Si $\omega \in \liminf A_n^c$, il existe un entier n_ω tel que, pour tout $n \geq n_\omega$,

$$\sup_{t \in [0,1]} \left| X_t^{(n+1)}(\omega) \right| \le \sqrt{n} \, 2^{-\frac{n+1}{2}}.$$

Pour tout $\omega \in \liminf A_n^c$, la série de terme général $X_t^{(n)}(\omega)$ converge donc normalement sur [0,1] ce qui entraı̂ne la convergence uniforme sur [0,1] de la suite de fonctions continues $B_t^{(n)}(\omega)$. On pose alors, pour $\omega \in \liminf A_n^c$,

$$\forall t \in [0,1], \quad B_t(\omega) = t \, \xi_0(\omega) + \sum_{n>0} X_t^{(n)}(\omega) = \lim_{n \to +\infty} B_t^{(n)}(\omega),$$

et pour $\omega \in \limsup A_n$,

$$\forall t \in [0,1], \qquad B_t(\omega) = 0.$$

Vu la convergence uniforme obtenue précédemment, pour tout $\omega \in \Omega$, $t \longmapsto B_t(\omega)$ est continue sur [0,1]. Il suffit donc de montrer $(B_0=0)$ que B est un processus gaussien centré de covariance $s \wedge t$ pour obtenir un mouvement brownien sur [0,1]. Remarquons tout d'abord que, d'après la relation (1), pour tous s et t de [0,1],

$$s \wedge t = \int_0^1 \mathbf{1}_{[0,s]}(x) \mathbf{1}_{[0,t]}(x) dx = \sum_{p>0} \psi_p(s) \psi_p(t).$$

Les $(\xi_n)_{n\geq 0}$ étant indépendantes, les variables aléatoires $X_t^{(n)} = \sum_{2^{n-1} \leq i < 2^n} \psi_i(t) \, \xi_i, \, n \in \mathbb{N}$ le sont également, et ce pour tout $t \in [0,1]$. De plus, elles sont centrées. On a d'autre part,

$$\sum_{n\geq 0} \mathbb{E}\left[\left(X_t^{(n)}\right)^2\right] = \sum_{n\geq 0} \sum_{2^{n-1}\leq i<2^n} \psi_i(t)^2 = \sum_{p\geq 0} \psi_p(t)^2 = t.$$

D'après le critère de convergence des séries de v.a. indépendantes et centrées, pour tout $t \in [0,1]$, $B_t^{(n)} = \sum_{i \leq n} X_t^{(i)}$ converge vers B_t dans $L^2(\Omega, \mathbb{P})$. Pour tous s et t de [0,1], nous avons par indépendance des ξ_n ,

$$\mathbb{E}[B_t B_s] = \lim_{n \to +\infty} \mathbb{E}\left[B_t^{(n)} B_s^{(n)}\right] = \lim_{n \to +\infty} \sum_{0 0} \psi_p(t) \psi_p(s) = t \wedge s.$$

Il reste à montrer que B est un processus gaussien. $G := \lambda_1 B_{t_1} + \ldots + \lambda_r B_{t_r}$ est la limite dans $L^2(\Omega, \mathbb{P})$ lorsque $n \to +\infty$ de

$$G_n := \lambda_1 B_{t_1}^{(n)} + \ldots + \lambda_r B_{t_r}^{(n)} = \sum_{0 \le p \le 2^n} (\lambda_1 \psi_p(t_1) + \ldots + \lambda_r \psi_p(t_r)) \, \xi_p \; ;$$

les v.a. $(\xi_n)_{n\in\mathbb{N}}$ étant indépendantes, G_n est une v.a.r. gaussienne pour tout n:G est donc une gaussienne.

Pour construire, un mouvement brownien sur \mathbb{R}_+ , il suffit de considérer une suite $(B^{(n)})_{n\geq 1}$ de mouvements browniens indépendants sur [0,1] et de définir

$$B_t = \sum_{1 \le k \le n}^{n} B_1^{(k)} + B_{t-n}^{(n+1)}, \quad \text{si} \quad n \le t \le n+1 ;$$

B est un processus gaussien centré de covariance $s \wedge t$ tel que $B_0 = 0$, c'est donc un mouvement brownien.