G12: Correction rapide du CC2.

Exercice 1. 1. (a) Soit $\varepsilon > 0$. On a $\mathbb{P}(|X_n| > \varepsilon) = \mathbb{P}(X_n > \varepsilon) = e^{-\lambda_n \varepsilon}$ qui tend vers 0 si et seulement si $\lim_{n \to +\infty} \lambda_n = +\infty$.

- (b) Pour tout entier $n \geq 1$, $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] = 1/\lambda_n$. $(X_n)_{n\geq 1}$ converge vers 0 dans L¹ si et seulement si $\lim_{n\to+\infty} \lambda_n = +\infty$.
- 2. La suite $(X_n)_{n\geq 1}$ converge vers 0 presque sûrement si et seulement si, pour tout réel $\varepsilon>0$, $\mathbb{P}(\limsup\{|X_n|>\varepsilon\})=0$. Comme les $(X_n)_{n\geq 1}$ sont indépendantes, cette condition est équivalente à $\sum_{n\geq 1}\mathbb{P}(X_n>\varepsilon)<+\infty$ pour tout $\varepsilon>0$ c'est à dire

$$\forall \varepsilon > 0, \qquad \sum_{n \ge 1} e^{-\lambda_n \varepsilon} < +\infty.$$

Il suffit de prendre $\lambda_n = \ln(n+1)$ pour obtenir l'exemple demandé.

Exercice 2. Par définition, $(X_n/n)_{n\geq 1}$ converge presque sûrement vers 0 si et seulement si, pour tout $\varepsilon > 0$, $\mathbb{P}(\limsup\{|X_n|/n > \varepsilon\}) = 0$. Puisque les $(X_n)_{n\geq 1}$ sont **indépendantes**, pour tout $\varepsilon > 0$,

$$\mathbb{P}\left(\limsup\left\{|X_n|/n>\varepsilon\right\}\right)=0\quad\Longleftrightarrow\quad \sum_{n\geq 1}\mathbb{P}\left(|X_n|/n>\varepsilon\right)<+\infty.$$

D'autre part, comme les $(X_n)_{n\geq 1}$ sont identiquement distribuées, pour tout $n\geq 1$ et tout $\varepsilon>0$, $\mathbb{P}(|X_n|/n>\varepsilon)=\mathbb{P}(|X_1|/\varepsilon>n)$. Par suite, pour tout $\varepsilon>0$,

$$\mathbb{P}\left(\limsup\left\{\frac{|X_n|}{n}>\varepsilon\right\}\right)=0\quad\Longleftrightarrow\quad \sum_{n\geq 1}\mathbb{P}\left(\frac{|X_1|}{\varepsilon}>n\right)<+\infty\quad\Longleftrightarrow\quad \mathbb{E}\left[\frac{|X_1|}{\varepsilon}\right]<+\infty$$

puisque qu'une variable aléatoire X est intégrable si et seulement si $\sum_{n>1} \mathbb{P}(|X|>n) < +\infty$.

Il reste à remarquer que, pour tout $\varepsilon > 0$, X_1/ε est intégrable si et seulement si X_1 l'est.

Exercice 3. 1. Pour tout réel t, on a, puisque les $(X_n)_{n\geq 1}$ sont i.i.d.

$$F_n(t) = \mathbb{P}(M_n \le t) = \mathbb{P}(X_1 \le t, \dots, X_n \le t) \stackrel{i.}{=} \mathbb{P}(X_1 \le t) \dots \mathbb{P}(X_n \le t) \stackrel{i.d.}{=} F(t)^n.$$

2. (a) Soient $\varepsilon > 0$ et $n \ge 1$. Puisque $\mathbb{P}(M_n > 1) = 0$, on a, F_n étant continue,

$$\mathbb{P}(|M_n - 1| > \varepsilon) = \mathbb{P}(1 - M_n > \varepsilon) = \mathbb{P}(M_n < 1 - \varepsilon) = F_n(1 - \varepsilon) = F(1 - \varepsilon)^n.$$

- (b) Soit $\varepsilon > 0$. On a $0 \le F(1-\varepsilon) < 1$ de sorte que $\sum_{n \ge 1} \mathbb{P}(|M_n 1| > \varepsilon) < +\infty$. Le lemme de Borel-Cantelli donne $\mathbb{P}(\limsup\{|M_n 1| > \varepsilon\}) = 0$.
 - $(M_n)_{n\geq 1}$ converge presque sûrement vers 1.
- 3. Soit $t \in \mathbf{R}$. On a, en notant G_n la fonction de répartition de $n(M_n 1)$,

$$G_n(t) = \mathbb{P}(n(M_n - 1) \le t) = \mathbb{P}(M_n \le 1 + t/n) = F(1 + t/n)^n.$$

Si $t \ge 0$, $G_n(t) = 1 = G(t)$ pour tout $n \ge 1$. Si t < 0, pour $n \ge -t$, $0 \le 1 + t/n < 1$ et $G_n(t) = (1 + t/n)^n \longrightarrow e^t$ si $n \to +\infty$.

Finalement, pour tout réel t, $\lim_{n\to+\infty} G_n(t) = G(t)$ et par conséquent $(n(M_n-1))_{n\geq 1}$ converge en loi vers Z.