Module G12 : Correction abrégée de l'examen du 13 juin 2005.

Exercice 1. 1. (a) D'après la loi forte des grands nombres, la suite $\left(\frac{S_n}{n}\right)_{n\geq 1}$ converge presque sûrement dans $\mathbb R$ si et seulement si X_1 est intégrable c'est à dire pour $0 < \alpha < 2$.

- (b) X_1 n'étant pas de carré intégrable x^2f n'est pas intégrable sur \mathbb{R} on ne peut pas appliquer le TCL.
- 2. (a) Puisque f est une fonction paire, $\varphi(t) = \int \cos(tx) f(x) \, dx$; on obtient la première formule en notant que $\int f(x) \, dx = 1$. La seconde formule s'obtient via le changement de variable u = tx.
- (b) La fonction γ est paire et continue sur \mathbb{R}_+^* . De plus, $|\gamma(u)| = -\gamma(u) \sim \frac{1}{2} \frac{1}{|u|^{\alpha-1}}$ en u = 0 et $|\gamma(u)| \leq \frac{2}{|u|^{1+\alpha}}$. Comme $\alpha 1 < 1$ et $\alpha + 1 > 1$, γ est intégrable sur \mathbb{R} .

Pour $u \neq 0$, $\lim_{t \to 0} \frac{\cos u - 1}{|t|^{1+\alpha} + |u|^{1+\alpha}} = \gamma(u)$. De plus, $\sup_t \left| \frac{\cos u - 1}{|t|^{1+\alpha} + |u|^{1+\alpha}} \right| \leq |\gamma(u)|$ qui est intégrable. D'après le théorème de convergence dominée,

$$\lim_{t \to 0} \frac{\varphi(t) - 1}{|t|^{\alpha}} = c \lim_{t \to 0} \int_{\mathbb{R}} \frac{\cos u - 1}{|t|^{1 + \alpha} + |u|^{1 + \alpha}} \, du = -2c \int_0^{+\infty} |\gamma(u)| \, du.$$

Cette dernière constante est strictement positive puisque $|\gamma|$ n'est pas nulle presque partout.

- (c) Les variables $(X_n)_{n\geq 1}$ étant i.i.d., on a $\varphi_n(t) = \varphi\left[\left(t/n^{1/\alpha}\right)\right]^n$.
- (d) Comme φ est continue et $\varphi(0)=1$, pour t fixé et n assez grand, $\varphi\left(t/n^{1/\alpha}\right)>0$ ce qui justifie l'écriture.
- (e) Fixons $t \in \mathbb{R}$. Puisque $\lim_{n \to +\infty} \varphi\left(t/n^{1/\alpha}\right) = 1$, $\log \varphi_n(t) \sim n\left(\varphi\left(t/n^{1/\alpha}\right) 1\right)$ lorsque n tend vers ∞ . D'après la question 2.(b), on a $\lim_{n \to +\infty} \log \varphi_n(t) = -c_1|t|^{\alpha}$.

D'après le théorème de Paul Lévy, $\left(\frac{S_n}{n^{1/\alpha}}\right)_{n\geq 1}$ converge en loi vers une v.a.r. L dont la fonction caractéristique est $\psi(t)=\exp\left(-c_1|t|^{\alpha}\right)$.

Exercice 2. 1. S_n suit la loi binomiale de paramètres n et p et T_n celle de paramètre n et 1 - p. Puisque $S_n + T_n = n$, S_n et T_n ne sont pas indépendantes : en effet si n est un entier non nul, $\mathbb{P}(S_n = 0, T_n = 0) = 0 \neq \mathbb{P}(S_n = 0)\mathbb{P}(T_n = 0) = (1 - p)^n p^n$.

2. (a) Soit $k \in \mathbb{N}$,

$$\mathbb{P}(\mathsf{U}=k) = \sum_{n \geq 0} \mathbb{P}(\mathsf{U}=k,\mathsf{N}=n) = \sum_{n \geq 0} \mathbb{P}(\mathsf{S}_n=k,\mathsf{N}=n) = \sum_{n \geq k} \mathbb{P}(\mathsf{S}_n=k,\mathsf{N}=n).$$

Puisque S_n et N sont indépendantes,

$$\mathbb{P}(\mathbf{U} = k) = \sum_{n \ge k} \mathbb{P}(\mathbf{S}_n = k) \, \mathbb{P}(\mathbf{N} = n) = \sum_{n \ge k} \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} \, e^{-\lambda} \frac{\lambda^n}{n!} = \dots = \frac{(\lambda p)^k}{k!} e^{-\lambda p}.$$

U suit la loi de Poisson de paramètre λp .

(b) De la même manière, pour $(k, l) \in \mathbb{N}^*$, par définition de U et V,

$$\mathbb{P}(U = k, V = l) = \sum_{n \ge 0} \mathbb{P}(S_n = k, n - S_n = l, N = n) = \mathbb{P}(N = k + l, S_{k+l} = k),$$

et par indépendance de S_{k+l} et N

$$\mathbb{P}(\mathbf{U} = k, \mathbf{V} = l) = e^{-\lambda} \frac{\lambda^{k+l}}{(k+l)!} \frac{(k+l)!}{k! \, l!} p^k (1-p)^l = e^{-\lambda} \frac{p^k}{k!} \frac{(1-p)^l}{l!}.$$

U et V sont donc indépendante puisque le terme ci-dessus est « à variables séparées ». Sommant en k, on montre que V suit la loi de Poisson de paramètre $\lambda(1-p)$.

- 3. (a) Les v.a.r. $(Y_n)_{n\geq 1}$ étant i.i.d. suivant la loi $\mathcal{P}(1)$, N_n suit la loi $\mathcal{P}(n)$ cf. la fonction caractéristique. D'après la question précédente, U_n et V_n sont indépendantes et suivent les lois de Poisson de paramètres respectifs np et n(1-p).
 - (b) D'après la loi des grands nombres $(N_n/n)_{n\geq 1}$ converge presque sûrement vers $\mathbb{E}[Y_1]=1$.
 - (c) On a

$$\frac{\mathbf{U}_n}{n} = \frac{\mathbf{N}_n}{n} \, \frac{\mathbf{S}_{\mathbf{N}_n}}{\mathbf{N}_n}$$

et le premier facteur tend presque sûrement vers 1. En particulier, la suite $(N_n)_{n\geq 1}$ croît presque sûrement vers $+\infty$. Soit Ω_1 tel que $\mathbb{P}(\Omega_1)=1$ et $N_n(\omega)\uparrow+\infty$ pour tout $\omega\in\Omega_1$. D'après la loi forte des grands nombres, il existe Ω_2 tel que $\mathbb{P}(\Omega_2)=1$ et $S_n(\omega)/n\longrightarrow\mathbb{E}[X_1]=p$. On a $\mathbb{P}(\Omega_1\cap\Omega_2)=1$ et $S_n(\omega)/n$ et $S_n(\omega)/n$ converge donc presque sûrement vers $S_n(\omega)/n$ et $S_n(\omega)/n$ converge presque sûrement vers $S_n(\omega)/n$ et $S_n(\omega)/n$ et $S_n(\omega)/n$ et $S_n(\omega)/n$ et $S_n(\omega)/n$ converge presque sûrement vers $S_n(\omega)/n$ et $S_n(\omega)$

(d) U_n suivant la loi de Poisson de paramètre np, un calcul élémentaire donne, pour tout t,

$$\varphi_{P_n}(t) = e^{-it\sqrt{np}} \exp\left\{np\left(e^{i\frac{t}{\sqrt{np}}} - 1\right)\right\} = e^{-it\sqrt{np}} \exp\left\{np\left(i\frac{t}{\sqrt{np}} - \frac{1}{2}\frac{t^2}{np} + \frac{t^2}{np}\varepsilon(t/\sqrt{np})\right)\right\}.$$

Par suite, $\varphi_{P_n}(t) = \exp\left(-\frac{t^2}{2} + t^2\varepsilon(t/\sqrt{np})\right) \longrightarrow \exp\left(-\frac{t^2}{2}\right)$. D'après le théorème de Paul Lévy, $(P_n)_{n\geq 1}$ converge en loi vers une v.a.r. de loi $\mathcal{N}(0,1)$.

On montre de la même façon que $(Q_n)_{n\geq 1}$ converge en loi vers une v.a.r. de loi $\mathcal{N}(0,1)$.

Passons à la convergence en loi du couple. Puisque U_n et V_n sont indépendantes, il en est de même de P_n et Q_n . Par conséquent, pour $(s, t) \in \mathbb{R}^2$,

$$\phi_{(\mathrm{P}_n,\mathrm{Q}_n)}(s,t) = \phi_{\mathrm{P}_n}(s)\,\phi_{\mathrm{Q}_n}(t) \longrightarrow e^{-\frac{t^2}{2}}e^{-\frac{t^2}{2}}.$$

Le théorème de Paul Lévy montre que $((P_n, Q_n))_{n\geq 1}$ converge en loi vers (P, Q) où P et Q sont indépendantes de même loi $\mathcal{N}(0, 1)$.

(e) La fonction de \mathbb{R}^2 dans \mathbb{R} $(x, y) \mapsto xy$ étant continue, $(P_nQ_n)_{n\geq 1}$ converge en loi vers PQ. Puisque P et Q sont indépendantes nous avons, pour tout réel t, via le théorème de Fubini,

$$\phi_{PQ}(t) = \frac{1}{2\pi} \int_{\mathbb{R}^2} e^{itxy} e^{-\frac{x^2}{2}} e^{-\frac{y^2}{2}} dx dy = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{y^2}{2}} \phi_{P}(ty) dy = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{y^2}{2}} e^{-\frac{t^2y^2}{2}} dy.$$

Par conséquent, notant $\sigma^2 = 1/(1 + t^2)$,

$$\phi_{PQ}(t) = \frac{1}{\sqrt{1+t^2}} \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} e^{-\frac{y^2}{2\sigma^2}} dy = \frac{1}{\sqrt{1+t^2}}$$

puisque l'on reconnait la densité de la loi $\mathcal{N}(0, \sigma^2)$.