Module G12: Correction de l'examen du 4 janvier 2005.

Exercice 1. 1. (a) Si $\omega \in \liminf\{|X_n| \le a\}$, il existe $n_\omega \ge 1$ tel que, pour tout $n \ge n_\omega$, $|X_n(\omega)| \le a$ et donc $X_n(\omega) = Y_n(\omega)$. Par suite, $C_S \cap \liminf\{|X_n| \le a\} = C_T \cap \liminf\{|X_n| \le a\}$.

Il reste à montrer que $C_S \subset \liminf\{|X_n| \le a\}$. Or si $\omega \in C_S$, $\lim_{n \to +\infty} X_n(\omega) = 0$; il existe $n_\omega \ge 1$ tel que pour tout $n \ge n_\omega$, $|X_n(\omega)| \le a$: $\omega \in \liminf\{|X_n| \le a\}$.

(b) D'après le lemme de Borel-Cantelli, $\mathbb{P}(\limsup\{|X_n|>a\})=0$ et puisque $(T_n)_{n\geq 1}$ converge presque sûrement, $\mathbb{P}(C_T^c)=0$. Par conséquent,

$$\mathbb{P}(C_S^c) \le \mathbb{P}(\limsup\{|X_n| > a\}) + \mathbb{P}(C_T^c) = 0 ;$$

 $(S_n)_{n\geq 1}$ converge presque sûrement.

(c) On a $\mathbb{P}(C_S) \leq \min(\mathbb{P}(C_T), \mathbb{P}(\liminf\{|X_n| \leq a\}) \leq 1$. Par suite, si $\mathbb{P}(C_S) = 1$, alors $\mathbb{P}(C_T) = 1$ et $\mathbb{P}(\liminf\{|X_n| \leq a\} = 1$.

Puisque les événements $(\{|X_n|>a\})_{n\geq 1}$ sont indépendants, le lemme de Borel-Cantelli implique que $\mathbb{P}(\limsup\{|X_n|>a\})=1-\mathbb{P}(\liminf\{|X_n|\leq a\})=0$ si et seulement si $\sum_{n>1}\mathbb{P}(|X_n|>a)<+\infty$.

- 2. (a) $Y_n \in L^2$ puisqu'elle est bornée par a. Les variables aléatoires $(Y_n \mathbb{E}[Y_n])_{n \geq 1}$ sont indépendantes, de carré intégrable (car bornées par 2a) et centrées. La série de terme général $Y_n \mathbb{E}[Y_n]$ converge presque sûrement et dans L^2 vers une v.a.r. de carré intégrable puisque $\sum_{n \geq 1} \mathbb{V}(Y_n \mathbb{E}[Y_n]) = \sum_{n \geq 1} \mathbb{V}(Y_n) < +\infty$. Comme $\sum_{n \geq 1} \mathbb{E}[Y_n]$ est convergente, $(T_n)_{n \geq 1}$ converge presque sûrement.
- (b) D'après la question précédente, la convergence des deux dernières séries entraı̂ne la convergence presque sûre de $(T_n)_{n\geq 1}$. Le résultat découle alors de la question 1.(b).
- 3. (a) On a, via $x = \alpha_n y$,

$$\mathbb{P}(|X_n| > 1) = \frac{2}{\pi} \int_1^{+\infty} \frac{\alpha_n}{\alpha_n^2 + x^2} dx = \frac{2}{\pi} \int_{\underline{-}}^{+\infty} \frac{dy}{1 + y^2} = \frac{2}{\pi} \left(\frac{\pi}{2} - \arctan \frac{1}{\alpha_n} \right) = \frac{2}{\pi} \arctan \alpha_n.$$

Clairement $\mathbb{E}[Y_n] = 0$ et,

$$\mathbb{V}(Y_n) = \mathbb{E}\left[Y_n^2\right] = \frac{2}{\pi} \,\alpha_n \, \int_0^1 \frac{x^2}{\alpha_n^2 + x^2} \, dx \le \frac{2}{\pi} \,\alpha_n \, \int_0^1 dx = \frac{2}{\pi} \,\alpha_n.$$

(b) Les séries de terme général $\mathbb{E}[Y_n]$ et $\mathbb{V}(Y_n)$ sont convergentes si $\sum_{n\geq 1} \alpha_n < +\infty$. D'autre part, arctan $\alpha_n \sim \alpha_n$ puisque $\alpha_n \longrightarrow 0$: les séries de terme général positif α_n et arctan α_n sont de même nature soit convergentes.

Le résultat 2.(b) montre que $(S_n)_{n\geq 1}$ converge presque sûrement vers une v.a.r. S.

(c) Puisque $(S_n)_{n\geq 1}$ converge presque sûrement vers S, $(S_n)_{n\geq 1}$ converge également en loi vers S. En particulier, pour tout réel t, $\lim_{n\to +\infty} \varphi_{S_n}(t) = \varphi_S(t)$. Or, les variables aléatoires $(X_n)_{n\geq 1}$ étant indépendantes, on a, pour tout $t\in \mathbb{R}$,

$$\varphi_{S_n}(t) = \prod_{1 \le k \le n} \varphi_{X_k}(t) = \prod_{1 \le k \le n} e^{-\alpha_k |t|} = e^{-|t| \sum_{k=1}^n \alpha_k}.$$

Donc $\varphi_{S_n}(t) \longrightarrow \varphi_S(t) = e^{-\alpha|t|}$ où $0 < \alpha = \sum_{n \ge 1} \alpha_k$. S suit la loi de Cauchy de paramètre α .

Exercice 2. 1. (a) Les variables aléatoires $(X_n)_{n\geq 1}$ sont i.i.d. et intégrables. D'après la loi forte des grands nombres, $(S_n/n)_{n\geq 1}$ converge presque sûrement vers α : il existe $\Omega_1 \in \mathcal{F}$ tel que $\mathbb{P}(\Omega_1) = 1$ et pour tout $\omega \in \Omega_1$, $S_n(\omega)/n \longrightarrow \alpha$. Comme $\alpha \neq 0$, pour tout $\omega \in \Omega_1$, il existe $n_\omega \in \mathbb{N}^*$ tel que, pour tout $n \geq n_\omega$, $S_n(\omega) \neq 0$ et

$$\lim_{n\to +\infty} \frac{n}{S_n(\omega)} \mathbf{1}_{\{S_n\neq 0\}}(\omega) = \lim_{n\to +\infty} \frac{n}{S_n(\omega)} = \frac{1}{\alpha}.$$

D'où le résultat.

- (b) D'après la loi forte des grands nombres, $(T_n/n)_{n\geq 1}$ converge presque sûrement vers β . D'après la question précédente, comme $\alpha \neq 0$, $(R_n)_{n\geq 1}$ converge presque sûrement vers β/α .
- (c) On a $Q_n = n^{-1/2} \sum_{k=1}^n (Y_n rX_n)$ Les variables aléatoires $(Y_n rX_n)_{n \geq 1}$ sont i.i.d., de carré intégrable et $\mathbb{E}[Y_1 rX_1] = 0$. De plus, $Q_n = \sqrt{n} \left(\frac{1}{n} \sum_{k=1}^n (Y_n rX_n) \mathbb{E}[Y_1 rX_1]\right)$. D'après le TCL, la suite $(Q_n)_{n \geq 1}$ converge en loi vers une v.a.r. G de loi $\mathcal{N}\left(0, \alpha^{-2}\sigma^2\right)$ puisque $\mathbb{V}(Y_1 rX_1) = \alpha^{-2}\sigma^2$.
- 2. (a) Comme déjà dit, la suite $\left(\frac{n}{S_n}\mathbf{1}_{\{S_n\neq 0\}}\right)_{n\geq 1}$ converge presque sûrement et donc en probabilité vers la constante α^{-1} , et $(Q_n)_{n\geq 1}$ converge en loi vers Q. D'après le lemme de Slutsky, $\left(\left(Q_n, \frac{n}{S_n}\mathbf{1}_{\{S_n\neq 0\}}\right)\right)_{n\geq 1}$ converge en loi vers (Q, α^{-1}) .
 - (b) Remarquons que, pour tout $n \geq 1$,

$$\sqrt{n}(R_n - r) = \frac{T_n - rS_n}{\sqrt{n}} \frac{n}{S_n} \mathbf{1}_{\{S_n \neq 0\}} - r\sqrt{n} \mathbf{1}_{\{S_n = 0\}} = Q_n \frac{n}{S_n} \mathbf{1}_{\{S_n \neq 0\}} - r\sqrt{n} \mathbf{1}_{\{S_n = 0\}}.$$

La fonction $(x,y) \longmapsto xy$ de \mathbb{R}^2 dans \mathbb{R} étant continue, la suite de terme général Q_n $\frac{n}{S_n} \mathbf{1}_{\{S_n \neq 0\}}$ converge en loi vers $G = Q/\alpha$ d'après la question précédente.

D'après la question 1.(a) il existe $\Omega_1 \in \mathcal{F}$ tel que : $\mathbb{P}(\Omega_1) = 1$ et, pour tout $\omega \in \Omega_1$, il existe $n_\omega \geq 1$ tel que, pour tout $n \geq n_\omega$, $S_n(\omega) \neq 0$ et donc $-\sqrt{n}\mathbf{1}_{\{S_n=0\}}(\omega) = 0$. La suite de terme général $-r\sqrt{n}\mathbf{1}_{\{S_n=0\}}$ converge presque sûrement (donc en probabilité) vers la constante 0.

La continuité de l'application $(x,y) \longrightarrow x+y$ de \mathbb{R}^2 dans \mathbb{R} et le lemme de Slusty impliquent la convergence en loi de $(\sqrt{n}(R_n-r))_{n\geq 1}$ vers $G=Q/\alpha$ de loi $\mathcal{N}\left(0,\alpha^{-4}\sigma^2\right)$.

3. (a) Si f est une fonction mesurable et positive, on a via le théorème de Tonelli,

$$\mathbb{E}[f(X_1)] = \int_{x=0}^{+\infty} f(x) \int_{y=x}^{+\infty} e^{-y} \, dy \, dx = \int_0^{+\infty} f(x) e^{-x} \, dx \; ;$$

 X_1 suit la loi exponentielle de paramètre 1. De même,

$$\mathbb{E}[f(Y_1)] = \int_{y=0}^{+\infty} f(y)e^{-y} \int_{x=0}^{y} dx \, dy = \int_{0}^{+\infty} f(y) \, ye^{-y} \, dy \; ;$$

 Y_1 suit la loi gamma de paramètre (1,1).

(b) D'après le rappel, nous avons $\mathbb{E}[X_1] = \mathbb{V}(X_1) = 1$ et $\mathbb{E}[Y_1] = \mathbb{V}(Y_1) = 2$. Il reste à déterminer $\mathbb{C}\text{ov}(X_1, Y_1)$. On a,

$$\mathbb{E}[X_1 Y_1] = \int_{y=0}^{+\infty} y e^{-y} \int_0^y x \, dx \, dy = \frac{1}{2} \int_0^{+\infty} y^3 e^{-y} \, dy = 3, \quad \mathbb{C}\text{ov}(X_1, Y_1) = 1.$$

Par conséquent, $\alpha = 1$, $\beta = 2$, r = 2 et

$$\sigma^2 = \mathbb{V}(\alpha Y_1 - \beta X_1) = \alpha^2 \, \mathbb{V}(Y_1) + \beta^2 \, \mathbb{V}(X_1) - 2\alpha\beta \, \mathbb{C}\text{ov}(X_1, Y_1) = 2.$$

Par continuité de l'application $x \longmapsto \alpha^2 x/\sigma$, la suite de terme général $\alpha^2 \sqrt{n}(R_n - r)/\sigma$ converge en loi vers U de loi $\mathcal{N}(0,1)$. Soit t > 0. Puisque la fonction de répartition, Φ , de U est continue sur \mathbb{R} ,

$$\mathbb{P}\left(r - \frac{\sigma}{\alpha^2} \frac{t}{\sqrt{n}} < R_n \le r + \frac{\sigma}{\alpha^2} \frac{t}{\sqrt{n}}\right) = \mathbb{P}\left(-t < \sqrt{n} \frac{\alpha^2}{\sigma} (R_n - r) \le t\right) \longrightarrow \Phi(t) - \Phi(-t).$$

On prend donc $\tau = t\sigma/\alpha^2$ soit $\tau = t\sqrt{2}$ puisque $\Phi(t) - \Phi(-t) = \sqrt{\frac{2}{\pi}} \int_0^t e^{-\frac{x^2}{2}} dx$.